http://www.lydsy.com/JudgeOnline/problem.php?id=3930

https://www.luogu.org/problemnew/show/P3172#sub

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

参考:

http://blog.csdn.net/u012288458/article/details/51024404

http://blog.csdn.net/TA201314/article/details/50963772

(然而上面这两位(自我感觉)或多或少都有问题)

3.25更新,已用代码实现本算法。


首先想到莫比乌斯反演,你们dp都是怎么想到的啊喂。

先行特判掉\(n=1\)和\(l>r\)和\(k>r\)的情况。

那么开始推式子,注意为了本人的习惯把h改为了r:

\(\sum_{i_1=l}^r\sum_{i_2=l}^r\cdots\sum_{i_n=l}^r[gcd(i_1,i_2,\cdots,i_n)=k]\)

\(=\sum_{i_1=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{i_2=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\cdots\sum_{i_n=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}[gcd(i_1,i_2,\cdots,i_n)=1]\)

\(=\sum_{i_1=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{i_2=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\cdots\sum_{i_n=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{d|gcd(i_1,i_2,\cdots,i_n)}\mu(d)\)

\(=\)套路(为了方便起见,下文开始\(\lfloor\frac{r}{k}\rfloor=r,\lceil\frac{l}{k}\rceil=l\))

\(=\sum_{d=1}^{r-l}(l\)到\(r\)的\(d\)的倍数的个数\()^n\mu(d)\)


PS1:这里有一个奇妙的性质那就是在\([l,r]\)区间中任取两个不相等的数,则他们的最大公约数不大于\(r-l\)。

问了数竞大佬,貌似给了一个靠谱的证明?

我们取\(ij\)两个互质的数,显然它们\(gcd=1\),那么我们给他们同时乘数m,则它们的\(gcd=m\),而\(r-l\)最小即为\((j-i)*m>=m\),问题得证。


PS2:为什么括号内不是一个式子呢,因为注意对于有相同数的数对我们没法处理,所以要减去它们,于是边算边记录每个数的出现次数,最后的\(cnt[i]\)表示的就是有两个或以上\(i\)的数对的个数,答案减去它们即可。

同时注意如果\(l=1\)的话则\(l\)到\(r\)之间存在\(k\)所以\(n\)个\(k\)是成立的于是不能多减。

处理\(cnt\)用跳着枚举的方法,不过复杂度并没因此变高到哪里去。

本蒟蒻不太会算复杂度,大概是\(O((r-l)*(1/1+1/2+...+1/(r-l))=\) \(O((r-l)log(r-l))\),如果对\(\mu=0\)的情况特判掉的话复杂度会再次减少


(终于证明完美了,如果有谁能论述一下网上莫比乌斯反演题解的正确性非常欢迎(我是真的没看懂TAT))

#include<cstdio>
#include<queue>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+5;
const ll p=1e9+7;
ll n,k,l,r,su[N],miu[N],cnt[N];
bool he[N];
ll pow(ll x,ll y){
ll res=1;
while(y){
if(y&1)res=res*x%p;
x=x*x%p;
y>>=1;
}
return res;
}
void Euler(int n){
int tot=0;
miu[1]=1;
for(int i=2;i<=n;i++){
if(!he[i]){
su[++tot]=i;
miu[i]=-1;
}
for(int j=1;j<=tot;j++){
if(i*su[j]>n)break;
he[i*su[j]]=1;
if(i%su[j]==0){
miu[i*su[j]]=0;break;
}
else miu[i*su[j]]=-miu[i];
}
}
return;
}
int main(){
scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
if(l>r||k>r){
puts("0");
return 0;
}
if(n==1){
if(l<=k&&k<=r)puts("1");
else puts("0");
return 0;
}
Euler(1e5);
l=(l%k!=0)+l/k;r/=k;
ll ans=0;
for(int i=r-l;i>=1;i--){
if(miu[i]){
int j=l,tot=0;
if(j%i!=0)j=j/i*i+i;
while(j<=r){
cnt[j-l]+=miu[i];
j+=i;tot++;
}
ans=(ans+miu[i]*pow(tot,n)%p)%p;
}
}
for(int i=r-l;i>=1;i--){
ans=(ans-cnt[i])%p;
}
if(l==1)ans=(ans-(cnt[0]-1))%p;
else ans=(ans-cnt[0])%p;
printf("%lld\n",(ans+p)%p);
return 0;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3930:[CQOI2015]选数——题解的更多相关文章

  1. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  2. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  3. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  4. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  7. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  8. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

  9. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

随机推荐

  1. CentOS6.5进不去系统,修复

    今天进系统出现问题了,然后在网上搜索了一下解决方案解决了,把解决方法记录下来,方便以后查阅. 输入root密码 #mount | grep "on /" //得到root用户所在分 ...

  2. What is the reason that a likelihood function is not a pdf?

    From: http://stats.stackexchange.com/questions/31238/what-is-the-reason-that-a-likelihood-function-i ...

  3. 「国庆训练」ArcSoft's Office Rearrangement(HDU-5933)

    题目与分析 题解见https://blog.csdn.net/cmershen/article/details/53200922. 训练赛场上我们写出来了--在4小时50分钟的时候...激情补题啊.. ...

  4. 十分钟掌握pandas(pandas官方文档翻译)

    十分钟掌握pandas 文档版本:0.20.3 这是一个对pandas简短的介绍,适合新用户.你可以在Cookbook中查看更详细的内容. 通常,我们要像下面一样导入一些包. In [1]: impo ...

  5. java DTO 转 POJO

    如果这两个类的要转化的属性其属性名不一样的话,那只能用get和set方法赋值 如果你的两个类要转化的属性名都一样,那可以用org.springframework.beans.BeanUtils这个类来 ...

  6. python3 bytes与hex_string之间的转换

    1, bytes to hex_string的转换: def byte_to_hex(bins): """ Convert a byte string to it's h ...

  7. Graph Theory

    Description Little Q loves playing with different kinds of graphs very much. One day he thought abou ...

  8. Alpha发布文案+美工

    文案: Alpha发布文稿 我们是Hello World!团队,下面由我来简要介绍一下我们组的作品,我们组做的是一个飞机射击类游戏,名字叫做空天猎.这个游戏是基于JAVA平台创建的,那么接下来让我给大 ...

  9. Pipeline组测试说明

    PIPELINE组测试报告 前言:我们组与学霸系统的其他两个小组共同合作开发,组成学霸系统的团体工作.作为学霸系统的一环,我们组起到承上启下的作用,因此,面向群体以及功能实现都是为给下一个组的工作做好 ...

  10. Ubuntu 12.04.1 LTS 升级 PHP 从5.3 到 5.5

    #!/bin/bash # desc install php5.5 #add-apt-repository ppa:ondrej/php5 #apt-get install python-softwa ...