题目大意:给定一个$n(n\leqslant10^5)$序列,$m(m\leqslant10^5)$个询问,每个询问给出$l_1,r_1,l_2,r_2,l_3,r_3$。令$s$为该三个区间的交集的大小,则输出$|[l_1,r_1]|+|[l_2,r_2]|+|[l_3,r_3]|−3|s|$

题解:$|[l_1,r_1]|+|[l_2,r_2]|+|[l_3,r_3]|$这一部分比较好求,主要就是求$|s|$,$s$是这三个区间元素的并集,可以想到用$bitset$,但是$bitset$似乎只可以求有多少种相同元素,而不可以求有多少个相同元素,这时可以改一下离散化的方式,排序后不要去重,这时就可以用这个数和这个数现在已经出现的次数定下一个唯一确定位置。这样就可以完成求并集的过程了。

这里可以用莫队来求每个数出现次数以及那一个元素出现的集合。但是发现空间复杂度是$O(\dfrac{nm}{\omega})$,开不下。可以把询问分成$3$次进行处理,就可以了

卡点:把一个$maxm$打成了$maxn$,然后$RE$

C++ Code:

#include <algorithm>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <iostream>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
while (isspace(ch = getchar()));
for (x = ch & 15; isdigit(ch = getchar()); ) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 100010
#define maxm 35000 int n, m;
int s[maxn], v[maxn];
std::bitset<maxn> ans[maxm + 10], res;
struct Query {
int l, r, id;
inline friend bool operator < (const Query &lhs, const Query &rhs) {
return lhs.l >> 8 == rhs.l >> 8 ? (lhs.l >> 8 & 1 ? lhs.r > rhs.r : lhs.r < rhs.r) : lhs.l < rhs.l;
}
} q[maxm * 3 + 10]; int tmpans[maxm + 10], cnt[maxn]; inline void add(int x) {res.set(x + cnt[x]); cnt[x]++;}
inline void del(int x) {cnt[x]--; res.reset(x + cnt[x]);} void solve() {
int tot = 0;
for (int i = 1; m && i < maxm; i++, m--) {
ans[i].set(); tmpans[i] = 0;
q[++tot].id = i, q[tot].l = read(), q[tot].r = read(), tmpans[i] += q[tot].r - q[tot].l + 1;
q[++tot].id = i, q[tot].l = read(), q[tot].r = read(), tmpans[i] += q[tot].r - q[tot].l + 1;
q[++tot].id = i, q[tot].l = read(), q[tot].r = read(), tmpans[i] += q[tot].r - q[tot].l + 1;
}
res.reset();
for (int i = 1; i <= n; i++) cnt[i] = 0;
int l = 1, r = 0;
std::sort(q + 1, q + tot + 1);
for (int i = 1; i <= tot; i++) {
while (r < q[i].r) add(s[++r]);
while (l > q[i].l) add(s[--l]);
while (r > q[i].r) del(s[r--]);
while (l < q[i].l) del(s[l++]);
ans[q[i].id] &= res;
}
const int M = tot / 3;
for (int i = 1; i <= M; i++) printf("%d\n", tmpans[i] - ans[i].count() * 3);
} int main() {
n = read(), m = read();
for (int i = 1; i <= n; i++) v[i] = s[i] = read();
std::sort(v + 1, v + n + 1);
for (int i = 1; i <= n; i++) s[i] = std::lower_bound(v + 1, v + n + 1, s[i]) - v;
while (m) solve();
return 0;
}

  

[洛谷P4688][Ynoi2016]掉进兔子洞的更多相关文章

  1. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  2. luogu P4688 [Ynoi2016]掉进兔子洞 bitset 莫队

    题目链接 luogu P4688 [Ynoi2016]掉进兔子洞 题解 莫队维护bitset区间交个数 代码 // luogu-judger-enable-o2 #include<cmath&g ...

  3. p4688 [Ynoi2016]掉进兔子洞

    传送门 分析 我们考虑先将所有数离散化 之后我们对于每个状态用一个bitset来记录 其中第i段表示颜色i的信息 对于每一段信息均是段首若干1,剩余若干0表示这种颜色有多少个 于是我们不难想到莫队 答 ...

  4. luogu P4688 [Ynoi2016]掉进兔子洞

    luogu 我们要求的答案应该是三个区间长度\(-3*\)在三个区间中都出现过的数个数 先考虑数列中没有相同的数怎么做,那就是对三个区间求交,然后交集大小就是要求的那个个数.现在有相同的数,考虑给区间 ...

  5. [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset)

    [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset) 题面 一个长为 n 的序列 a.有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间 ...

  6. BZOJ.4939.[Ynoi2016]掉进兔子洞(莫队 bitset 分组询问)

    BZOJ 洛谷 删掉的数即三个区间数的并,想到bitset:查多个区间的数,想到莫队. 考虑bitset的每一位如何对应每个数的不同出现次数.只要离散化后不去重,每次记录time就可以了. 但是如果对 ...

  7. Luogu4688 [Ynoi2016]掉进兔子洞 【莫队,bitset】

    题目链接:洛谷 我们知道要求的是\([l_1,r_1],[l_2,r_2],[l_3,r_3]\)的可重集取交的大小,肯定是要用bitset的,那怎么做可重集呢? 那就是要稍微动点手脚,首先在离散化的 ...

  8. 【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)

    题目链接 第一道Ynoi 显然每次询问的答案为三个区间的长度和减去公共数字个数*3. 如果是公共数字种数的话就能用莫队+bitset存每个区间的状态,然后3个区间按位与就行了. 但现在是个数,bits ...

  9. BZOJ4939: [Ynoi2016]掉进兔子洞(莫队 bitset)

    题意 题目链接 一个长为 n 的序列 a. 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间剩下的数的个数和,询问独立. 注意这里删掉指的是一个一个删,不是把等于 ...

随机推荐

  1. java String matches 正则表达

    package test; /** * 在String的matches()方法,split()方法中使用正则表达式. * @author fhd001 */ public class RegexTes ...

  2. VIO概述 On-Manifold Preintegration for Real-Time Visual--Inertial Odometry

    目前的研究方向可以总结为在滤波算法中实现高精度,在优化算法中追求实时性.当加入IMU后,研究方向分为松耦合和紧耦合,松耦合分别单独计算出IMU测量得到的状态和视觉里程计得到的状态然后融合,紧耦合则将I ...

  3. redis 学习笔记二

    redis启动: 直接 redis-server.exe 启动服务,是按照redis默认配置启动的,如果想按照自己的配置文件启动,要加上 redis-server.exe  redis.windows ...

  4. Linux命令应用大词典-第12章 程序编译

    12.1 gcc:GNU项目的C和C++编译器 12.2 gdberver:为GNU调试的远程服务器 12.3 cmake:跨平台的Makefile生成工具 12.4 indent:更改通过插入或删除 ...

  5. lintcode433 岛屿的个数

    岛屿的个数 给一个01矩阵,求不同的岛屿的个数. 0代表海,1代表岛,如果两个1相邻,那么这两个1属于同一个岛.我们只考虑上下左右为相邻. 您在真实的面试中是否遇到过这个题? Yes 样例 在矩阵: ...

  6. Dev c++ 调试步骤

    不能调试的时候,修改下列地方: 1.在“工具”->编译选项->”Add following commands when calling complier”下面的编辑框里写入:-g3 2.在 ...

  7. 您的下个中文网站可以使用的5个高质量中文Webfont

    你有没有考虑为什么中文网站的版式风格不像大多数现代英文网站那样丰富?您想了解如何让您的下一个中文网站项目更吸引用户的眼球么?继续往下读吧…… 根据Smashing Magazine进行的一项调查显示  ...

  8. def语句和参数

    如果调用print()或len()函数,你会传入一些值,放在括号内,在这里成为“参数”.也可以自己定义接受参数的函数.在文件编辑器中输入这个例子: def hello(name): print('He ...

  9. Halcon和visionPro的比较

    很多朋友会问到visionpro和halcon这两款机器视觉软件,到底学哪个好呢,今天重码网就给大家讲一讲: 首先比较下两者的优缺点: halcon: 提供的图像算法要比Visionpro多,也就是说 ...

  10. opencv-学习笔记(2)

    opencv-学习笔记(2) 这章记录了 获取像素点,改变像素点 获取图像的属性(行,列,通道数,数据类型) roi感应区 拆分以及合并图像通道 边缘扩充 opencv获取像素点,改变像素点 ---- ...