题目大意:给定一个$n(n\leqslant10^5)$序列,$m(m\leqslant10^5)$个询问,每个询问给出$l_1,r_1,l_2,r_2,l_3,r_3$。令$s$为该三个区间的交集的大小,则输出$|[l_1,r_1]|+|[l_2,r_2]|+|[l_3,r_3]|−3|s|$

题解:$|[l_1,r_1]|+|[l_2,r_2]|+|[l_3,r_3]|$这一部分比较好求,主要就是求$|s|$,$s$是这三个区间元素的并集,可以想到用$bitset$,但是$bitset$似乎只可以求有多少种相同元素,而不可以求有多少个相同元素,这时可以改一下离散化的方式,排序后不要去重,这时就可以用这个数和这个数现在已经出现的次数定下一个唯一确定位置。这样就可以完成求并集的过程了。

这里可以用莫队来求每个数出现次数以及那一个元素出现的集合。但是发现空间复杂度是$O(\dfrac{nm}{\omega})$,开不下。可以把询问分成$3$次进行处理,就可以了

卡点:把一个$maxm$打成了$maxn$,然后$RE$

C++ Code:

#include <algorithm>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <iostream>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
while (isspace(ch = getchar()));
for (x = ch & 15; isdigit(ch = getchar()); ) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 100010
#define maxm 35000 int n, m;
int s[maxn], v[maxn];
std::bitset<maxn> ans[maxm + 10], res;
struct Query {
int l, r, id;
inline friend bool operator < (const Query &lhs, const Query &rhs) {
return lhs.l >> 8 == rhs.l >> 8 ? (lhs.l >> 8 & 1 ? lhs.r > rhs.r : lhs.r < rhs.r) : lhs.l < rhs.l;
}
} q[maxm * 3 + 10]; int tmpans[maxm + 10], cnt[maxn]; inline void add(int x) {res.set(x + cnt[x]); cnt[x]++;}
inline void del(int x) {cnt[x]--; res.reset(x + cnt[x]);} void solve() {
int tot = 0;
for (int i = 1; m && i < maxm; i++, m--) {
ans[i].set(); tmpans[i] = 0;
q[++tot].id = i, q[tot].l = read(), q[tot].r = read(), tmpans[i] += q[tot].r - q[tot].l + 1;
q[++tot].id = i, q[tot].l = read(), q[tot].r = read(), tmpans[i] += q[tot].r - q[tot].l + 1;
q[++tot].id = i, q[tot].l = read(), q[tot].r = read(), tmpans[i] += q[tot].r - q[tot].l + 1;
}
res.reset();
for (int i = 1; i <= n; i++) cnt[i] = 0;
int l = 1, r = 0;
std::sort(q + 1, q + tot + 1);
for (int i = 1; i <= tot; i++) {
while (r < q[i].r) add(s[++r]);
while (l > q[i].l) add(s[--l]);
while (r > q[i].r) del(s[r--]);
while (l < q[i].l) del(s[l++]);
ans[q[i].id] &= res;
}
const int M = tot / 3;
for (int i = 1; i <= M; i++) printf("%d\n", tmpans[i] - ans[i].count() * 3);
} int main() {
n = read(), m = read();
for (int i = 1; i <= n; i++) v[i] = s[i] = read();
std::sort(v + 1, v + n + 1);
for (int i = 1; i <= n; i++) s[i] = std::lower_bound(v + 1, v + n + 1, s[i]) - v;
while (m) solve();
return 0;
}

  

[洛谷P4688][Ynoi2016]掉进兔子洞的更多相关文章

  1. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  2. luogu P4688 [Ynoi2016]掉进兔子洞 bitset 莫队

    题目链接 luogu P4688 [Ynoi2016]掉进兔子洞 题解 莫队维护bitset区间交个数 代码 // luogu-judger-enable-o2 #include<cmath&g ...

  3. p4688 [Ynoi2016]掉进兔子洞

    传送门 分析 我们考虑先将所有数离散化 之后我们对于每个状态用一个bitset来记录 其中第i段表示颜色i的信息 对于每一段信息均是段首若干1,剩余若干0表示这种颜色有多少个 于是我们不难想到莫队 答 ...

  4. luogu P4688 [Ynoi2016]掉进兔子洞

    luogu 我们要求的答案应该是三个区间长度\(-3*\)在三个区间中都出现过的数个数 先考虑数列中没有相同的数怎么做,那就是对三个区间求交,然后交集大小就是要求的那个个数.现在有相同的数,考虑给区间 ...

  5. [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset)

    [Luogu 4688] [Ynoi2016]掉进兔子洞 (莫队+bitset) 题面 一个长为 n 的序列 a.有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间 ...

  6. BZOJ.4939.[Ynoi2016]掉进兔子洞(莫队 bitset 分组询问)

    BZOJ 洛谷 删掉的数即三个区间数的并,想到bitset:查多个区间的数,想到莫队. 考虑bitset的每一位如何对应每个数的不同出现次数.只要离散化后不去重,每次记录time就可以了. 但是如果对 ...

  7. Luogu4688 [Ynoi2016]掉进兔子洞 【莫队,bitset】

    题目链接:洛谷 我们知道要求的是\([l_1,r_1],[l_2,r_2],[l_3,r_3]\)的可重集取交的大小,肯定是要用bitset的,那怎么做可重集呢? 那就是要稍微动点手脚,首先在离散化的 ...

  8. 【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)

    题目链接 第一道Ynoi 显然每次询问的答案为三个区间的长度和减去公共数字个数*3. 如果是公共数字种数的话就能用莫队+bitset存每个区间的状态,然后3个区间按位与就行了. 但现在是个数,bits ...

  9. BZOJ4939: [Ynoi2016]掉进兔子洞(莫队 bitset)

    题意 题目链接 一个长为 n 的序列 a. 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间剩下的数的个数和,询问独立. 注意这里删掉指的是一个一个删,不是把等于 ...

随机推荐

  1. ATextAppearance.AppCompat.Small not found

    今天编译的代码的时候,刚才还是好的,后来吃个饭回来,就不行了. 报错如下: AGPBI: {"kind":"error","text":&q ...

  2. redhat防火墙管理

    systemctl status firewalldsystemctl stop firewalldsystemctl start firewalldsystemctl enable firewall ...

  3. java 泛型历史遗留问题

    Map<String,Integer> hashMap = new HashMap<String,Integer>(); hashMap.put(); // hashMap.p ...

  4. 「日常训练」Brackets in Implications(Codeforces Round 306 Div.2 E)

    题意与分析 稍微复杂一些的思维题.反正这场全是思维题,就一道暴力水题(B).题解直接去看官方的,很详尽. 代码 #include <bits/stdc++.h> #define MP ma ...

  5. lesson 22 by heart

    lesson 22 by heart on end = continuously 连续不断地 know/learn sth by heart 记忆sth falter: speak hesitantl ...

  6. Java注解的基本原理

    注解的本质就是一个继承了Annotation接口的接口,一个注解准确意义上来说,只不过是一种特殊注释而已,如果没有解析他的代码,他可能连注释都不如. 解析一个类或者方法的注解往往有两种形式,一种是编译 ...

  7. [JSON].remove( keyPath )

    语法:[JSON].remove( keyPath ) 返回:无 说明:移除指定路径的键 示例: Set jsonObj = toJson("{div:{'#text-1': 'is tex ...

  8. CodeForces - 1059D(二分+误差)

    链接:CodeForces - 1059D 题意:给出笛卡尔坐标系上 n 个点,求与 x 轴相切且覆盖了所有给出点的圆的最小半径. 题解:二分半径即可.判断:假设当前二分到的半径是 R ,因为要和 x ...

  9. 【Linux 运维】linux系统关机、重启、注销命令

    linux 关机.重启.注销命令: 关机命令: shutdown -h now 立刻关机(生产常用) shutdown -h  +1  一分钟后关机      (    shutdown -c 可以将 ...

  10. 【第三章】MySQL数据库的字段约束:数据完整性、主键、外键、非空、默认值、自增、唯一性

    一.表完整性约束 作用:用于保证数据的完整性和一致性==============================================================约束条件  说明PRIM ...