POJ3304:Segments——题解
http://poj.org/problem?id=3304
题目大意:给n条线段,求是否存在一条直线,将所有线段投影到上面,使得所有投影至少交于一点。
————————————————————————————
首先考虑当情况可能时,过相交点做垂线,则垂线一定与所有线相交。
所以就变成了求是否存在一条直线,使得直线和所有直线都相交的问题了。
显然如果存在这样的线,那么至少有一种情况,这样的线的两个端点是其中两条直线的任意两个端点。
那么枚举两个端点判断即可。
https://www.cnblogs.com/wuwangchuxin0924/p/6218494.html 如何判断两直线相交。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
const int N=;
struct point{//既是向量又是点
dl x;
dl y;
}p[*N];
int n;
inline point getmag(point a,point b){
point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline dl multiX(point a,point b){
return a.x*b.y-b.x*a.y;
}
bool check(point a,point b){
if(fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps)return ;
for(int i=;i<=n;i++){
if(multiX(getmag(a,p[i]),getmag(a,b))*multiX(getmag(a,p[i+n]),getmag(a,b))>eps)return ;
}
return ;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf",&p[i].x,&p[i].y,&p[i+n].x,&p[i+n].y);
}
bool flag=;
for(int i=;i<=*n&&!flag;i++){
for(int j=i+;j<=*n&&!flag;j++){
if(check(p[i],p[j]))flag=;
}
}
if(flag)puts("Yes!");
else puts("No!");
}
return ;
}
POJ3304:Segments——题解的更多相关文章
- poj3304 Segments【计算几何】
C - Segments POJ - 3304 最近开始刷计算几何了 公式好多完全不会 数学不行 几何不行 记忆力不行 当机 查的题解 就当复习吧 这套专题拿来熟悉一下计算几何模板 #include ...
- POJ3304:Segments (几何:求一条直线与已知线段都有交点)
Given n segments in the two dimensional space, write a program, which determines if there exists a l ...
- POJ3304 Segments 【线段直线相交】
题意: 给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!. 思路: 计算几何.这道题要思考到两点: 1:把问题转化为是否存在一条直线 ...
- POJ3304 Segments
嘟嘟嘟 题面就不说了,网上都有. 刚开始理解成了只要有不孤立的线段就算合法,结果就不会了--然而题中要求是所有线段至少有一个交点. 其实想一想就知道,问题转化为了是否存在一条直线和所有线段都有交点. ...
- [CF846C]Four Segments题解
我们暴力枚举一下\(delim_{1}\) 然后对于每个\(delim_{1}\),O(n)扫一遍+前缀和求出最大\(delim_{0}\)和\(delim_{2}\),然后记录一下它们的位置就行啦 ...
- Codeforces Round #535(div 3) 简要题解
Problem A. Two distinct points [题解] 显然 , 当l1不等于r2时 , (l1 , r2)是一组解 否则 , (l1 , l2)是一组合法的解 时间复杂度 : O(1 ...
- 【kuangbin专题】计算几何基础
1.poj2318 TOYS 传送:http://poj.org/problem?id=2318 题意:有m个点落在n+1个区域内.问落在每个区域的个数. 分析:二分查找落在哪个区域内.叉积判断点与线 ...
- poj分类解题报告索引
图论 图论解题报告索引 DFS poj1321 - 棋盘问题 poj1416 - Shredding Company poj2676 - Sudoku poj2488 - A Knight's Jou ...
- Codeforces Round #690 (Div. 3)
第一次 ak cf 的正式比赛,不正式的是寒假里 div4 的 Testing Round,好啦好啦不要问我为什么没有 ak div4 了,差一题差一题 =.= 不知不觉已经咕了一个月了2333. 比 ...
随机推荐
- spring boot 数据库连接
server: port: 8080 spring: datasource: url: jdbc:mysql://localhost:3306/jdjk?serverTimezone=Asia/Sha ...
- python中- \r用法
# \r 默认表示将输出的内容返回到第一个指针,这样的话,后面的内容会覆盖前面的内容 def main(): for i in range(65,91): s="\r{name:s}&quo ...
- Process Monitor工具找网吧广告
很多网吧经常有遇到有一些客户机多了一些广告或者是可能是有中毒的情况.Process Monitor 软件可以方便的监视和记录系统各程序的进程线程,注册表,网络,文件读写等活动. 1,开超级用户,双击打 ...
- 180623-SpringBoot之logback配置文件
SpringBoot配置logback 项目的日志配置属于比较常见的case了,之前接触和使用的都是Spring结合xml的方式,引入几个依赖,然后写个 logback.xml 配置文件即可,那么在S ...
- logstash-input-jdbc and logstash-ouput-jdbc
要求通过logstash从oracle中获取数据,然后相应的直接传入mysql中去. 基本测试成功的配置文件如下: input { stdin { } jdbc { jdbc_connection_s ...
- python学习笔记02 --------------基础数据类型
python的基本数据类型: 1.基本数据 1.1. 数字类型 1.1.1 整数 int int() #将括号内内容转化为整数类型. 1.1.2 浮点数 float 1.1.3 复 ...
- Java Web开发框架Spring+Hibernate整合效果介绍(附源码)(已过期,有更好的)
最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...
- 人脸识别 ArcFace Demo [Windows]
Arcsoft ArcfaceDemo for Windows, VS2013 C++ 使用虹软技术开发完成 使用步骤: 1.下载SDK包,32位Windows平台将五个SDK包里lib中的文件到 ...
- 在 CentOS 下手工安装 Docker v1.1x
Docker在 centos 6.x 下面默认最新的版本是1.7, 然而这个并不符合我的实际需求, 尤其我需要 docker-compose 来作为编配工具部署swarm, 所以我只有手工安装了. 首 ...
- 小程序的picker的range 是一个 Object Array (对象数组)
小程序的picker的range 是一个 Object Array (对象数组) 数据: array: [{'id':1,'name':'Android'},{'id':2,'name':'IOS'} ...