在动态规划中,经常遇到形如下式的状态转移方程:

    m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max)

  上述的m(i,j)表示区间[i,j]上的某个最优值。w(i,j)表示在转移时需要额外付出的代价。该方程的时间复杂度为O(N3)

  

  下面我们通过四边形不等式来优化上述方程,首先介绍什么是“区间包含的单调性”和“四边形不等式”

    1、区间包含的单调性:如果对于 i≤i'<j≤j',有 w(i',j)≤w(i,j'),那么说明w具有区间包含的单调性。(可以形象理解为如果小区间包含于大区间中,那么小区间的w值不超过大区间的w值)

    2、四边形不等式:如果对于 i≤i'<j≤j',有 w(i,j)+w(i',j')≤w(i',j)+w(i,j'),我们称函数w满足四边形不等式。(可以形象理解为两个交错区间的w的和不超过小区间与大区间的w的和)

  下面给出两个定理:

    1、如果上述的 w 函数同时满足区间包含单调性和四边形不等式性质,那么函数 m 也满足四边形不等式性质

       我们再定义 s(i,j) 表示 m(i,j) 取得最优值时对应的下标(即 i≤k≤j 时,k 处的 w 值最大,则 s(i,j)=k)。此时有如下定理

    2、假如 m(i,j) 满足四边形不等式,那么 s(i,j) 单调,即 s(i,j)≤s(i,j+1)≤s(i+1,j+1)。

  好了,有了上述的两个定理后,我们发现如果w函数满足区间包含单调性和四边形不等式性质,那么有 s(i,j-1)≤s(i,j)≤s(i+1,j) 。

  即原来的状态转移方程可以改写为下式:

     m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(s(i,j-1)≤k≤s(i+1,j))(min也可以改为max)

  由于这个状态转移方程枚举的是区间长度 L=j-i,而 s(i,j-1) 和 s(i+1,j) 的长度为 L-1,是之前已经计算过的,可以直接调用。

  不仅如此,区间的长度最多有n个,对于固定的长度 L,不同的状态也有 n 个,故时间复杂度为 O(N^2),而原来的时间复杂度为 O(N^3),实现了优化!

  今后只需要根据方程的形式以及 w 函数是否满足两条性质即可考虑使用四边形不等式来优化了。

  以上描述状态用 m(i,j),后文用的 dp[i][j],所代表含意是相同的,特此说明。

  以石子合并问题为例。

  例如有6堆石子,每堆石子数依次为3 4 6 5 4 2

  因为是相邻石子合并,所以不能用贪心(每次取最小的两堆合并),只能用动归。(注意:环形石子的话,必须要考虑最后一堆和第一堆的合并。)

  例如:一个合并石子的方案:

    第一次合并 3 4 6 5 4 2 ->7

    第二次合并 7 6 5 4 2 ->13

    第三次合并 13 5 4 2 ->6

    第四次合并 13 5 6 ->11

    第五次合并 13 11 ->24

  总得分=7+6+11+13+24=61 显然,比贪心法得出的合并方案(得分:62)更优。

  

  动归分析类似矩阵连乘等问题,得出递推方程:

    设 dp[i][j] 表示第 i 到第 j 堆石子合并的最优值,sum[i][j] 表示第 i 到第 j 堆石子的总数量。

    (可以在计算开始先做一遍求所有的 sum[i],表示求出所有第1堆到第i堆的总数量。则 sum[i][j]=sum[j]-sum[i]。这样计算比较快。)

  那么就有状态转移公式:

      

    这里 i<=k<j

  普通解法需要 O(n^3)。下面使用四边形不等式进行优化。

  首先判断是否符合区间单调性和四边形不等式。

     i  i'    j    j'

    3 4 6 5 4 2

  单调性:

    w[i',j] = 4+6+5=15 w[i,j'] =3+4+6+5+4+2=24

  故w[i',j] <= w[i,j'] 满足单调性

  四边形不等式:

    w[i,j] + w[i',j'] = (3+4+6+5) + (4+6+5+4+2) = 18+21 = 39

    w[i',j] + w[i,j'] = (4+6+5) + (3+4+6+5+4+2) = 15 + 24 = 39

    故 w[i,j] + w[i',j'] <= w[i',j] + w[i,j']

  故石子合并可利用四边形不等式进行优化。

  利用四边形不等式,将原递推方程的状态转移数量进行压缩(即缩小了k的取值范围)。

  令 s[i][j]=min{k | dp[i][j] = dp[i][k-1] + dp[k][j] + w[i][j]},即计算出 dp[i][j] 时的最优的 k 值(本例中寻优为取最小)

  也可以称为最优决策时的 k 值。由于决策 s 具有单调性,因此状态转移方程中的 k 的取值范围可修改为 :

    s[i,j-1] <= s[i,j] <= s[i+1,j]

    边界:s[i,i] = i

  因为 s[i,j] 的值在 m[i,j] 取得最优值时,保存和更新,因此 s[i,j-1] 和 s[i+1,j] 都在计算 dp[i][j-1] 以及 dp[i+1][j] 的时候已经计算出来了。

  因此,s[i][j] 即 k 的取值范围很容易确定。

  根据改进后的状态方程,以及 s[i][j] 的定义方程,可以很快的计算出所有状态的值。计算过程可以如下表所示(类似于矩阵连乘的打表)。

  状态表(如果是环形石子合并,需要打2n*2n的表)

    3 4 6 5 4 2

  

  例如:

    计算dp[1][3],由于s[1][2]=1,s[2][3]=2,则k值的取值范围是1<=k<=2

    则,dp[1][3]=min{dp(1,1)+dp(2,3)+13, dp(1,2)+dp(3,3)+13}=min{10+13, 7+13}=20,将其填到状态表。同时,由于取最优值的k等于2,则将其填到s表。

    同理,可以计算其他状态表和s表中的值。

      dp[2][4]=min{dp(2,2)+dp(3,4)+15, dp(2,3)+dp(4,4)+15}=min{11+15, 10+15}=25

      k=3

    从表中可以看出,当计算dp[2][5]的时候,由于s[ i,j-1]=s[ 2,4]=3,s[ i+1,j]=s[3,5]=3,此时k的取值范围已经限定为只有一个,大幅缩短了寻找最优解的时间。

  这里给出程序代码:

 #include<iostream>
#include<cstdio>
using namespace std; const int N=;
const int INF=0x7fffffff;
int n;
int a[N],sum[N],dp[N][N],s[N][N];
void f();
int main()
{
while(~scanf("%d",&n))
{
sum[]=;
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
f();
printf("%d\n",dp[][n]);
}
return ; }
void f()
{
for (int i=;i<=n;i++) dp[i][i]=,s[i][i]=i;
for (int r=;r<n;r++)
{
for (int i=;i<n;i++)
{
int j=i+r;
if(j>n) break;
dp[i][j]=INF;
for (int k=s[i][j-];k<=s[i+][j];k++)
{
if(dp[i][j]>dp[i][k]+dp[k+][j])
{
dp[i][j]=dp[i][k]+dp[k+][j];
s[i][j]=k;
}
}
dp[i][j]+=sum[j]-sum[i-];
}
}
}

本文转载自网易博客:

    http://blog.163.com/dqx_wl/blog/static/2396821452015111133052112/

四边形不等式优化_石子合并问题_C++的更多相关文章

  1. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  2. <四边形不等式优化>[NOI1995]石子合并

    留个坑 挺套路的 明天来写个总结 #include<cstdio> #include<algorithm> inline int read() { int x = 0,f = ...

  3. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  4. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  5. [NOI1995]石子合并 四边形不等式优化

    链接 https://www.luogu.org/problemnew/show/P1880 思路 总之就是很牛逼的四边形不等式优化 复杂度\(O(n^2)\) 代码 #include <ios ...

  6. 51nod 1022 石子归并 V2 —— DP四边形不等式优化

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限 ...

  7. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  8. Codevs 3002 石子归并 3(DP四边形不等式优化)

    3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...

  9. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

随机推荐

  1. 服务不支持 chkconfig 的解决方法

    系统服务,在chkconfig --add  servername的时候老是提示服务不支持 chkconfig,经过查找,解决办法如下. 示例,auto_run的前三行如下:#!/bin/sh#chk ...

  2. 转!!CSRF攻击与防御(写得非常好)

    CSRF概念:CSRF跨站点请求伪造(Cross—Site Request Forgery),跟XSS攻击一样,存在巨大的危害性,你可以这样来理解:       攻击者盗用了你的身份,以你的名义发送恶 ...

  3. [luogu4234]最小差值生成树

    [luogu4234]最小差值生成树 luogu 从小到大枚举边,并连接,如果已连通就删掉路径上最小边 lct维护 \(ans=min(E_{max}-E_{min})\) #include<b ...

  4. MongoDB-3: 查询(一)

    一.简介 MongoDB提供了db.collection.find() 方法可以实现根据条件查询和指定使用投影运算符返回的字段省略此参数返回匹配文档中的所有字段. 二.db.collection.fi ...

  5. python通过原生sql查询数据库(共享类库)

    #!/usr/bin/python # -*- coding: UTF-8 -*- """DB共享类库""" # 使用此类,先实例化一个Da ...

  6. Giraph执行报错,Error: Exceeded limits on number of counters - Counters=120 Limit=120, exiting...

    HamaWhite 原创,转载请注明出处.欢迎大家增加Giraph 技术交流群: 228591158 1. 近日用Giraph跑大数据的SSSP时,遇到例如以下错误: org.apache.hadoo ...

  7. [今日干货]一个吸粉效果也不错的APP

    最近陌陌被封很厉害,今天给大家分享一个吸粉效果也不错的APP——悦跑圈,日吸几百粉没问题~ 1.首先下载APP悦跑圈,用手机号码注册. 2.改写资料和头像,最好用一个女性头像,真实点的,不是网图,增加 ...

  8. MySQL 多表查询(Day43)

    阅读目录 一,介绍 二,多表连接查询 三,符合条件链接查询 四,子查询 五,综合练习 ========================================================= ...

  9. DOM实例

    同一种功能两种方法: <script type='text/javascript'> <!-- var tag = document.creatElement("a&quo ...

  10. HDU 3966 Aragorn's Story (树链剖分入门题)

    树上路径区间更新,单点查询. 线段树和树状数组都可以用于本题的维护. 线段树: #include<cstdio> #include<iostream> #include< ...