Tricks Device

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=5294

Description

Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.

Input

There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.

Output

Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.

Sample Input

8 9

1 2 2

2 3 2

2 4 1

3 5 3

4 5 4

5 8 1

1 6 2

6 7 5

7 8 1

Sample Output

2 6

Hint

题意

给一个无向图,然后问你最少删除多少个边使得最短路改变。

最多删除多少条边使得最短路仍然不变。

题解:

第一个问题,我们把所有最短路的边扔去跑最小割就好了。

第二个问题,跑一个dij然后除了最短的那条最短路以外,其他的边都删除就好了。

代码

#include <bits/stdc++.h>

using namespace std;
const int maxn = 2000 + 50;
struct edge{
int v , nxt , w;
}e[60000 * 3];
struct node{
int x , y , z;
friend bool operator < (const node & a ,const node & b){
return a.y > b.y || ( a.y == b.y && a.z > b.z );
}
node(int x = 0 ,int y = 0 , int z = 0) : x(x) , y(y) , z(z) {}
};
int n , m , head[maxn] , tot , flag[maxn];
pair < int , int > dp1[maxn] , dp2[maxn];
int E1[60000*2+5],E2[60000*2+5],E3[60000*2+5]; namespace NetFlow
{
const int MAXN=100000,MAXM=1000000,inf=1e9;
struct Edge
{
int v,c,f,nx;
Edge() {}
Edge(int v,int c,int f,int nx):v(v),c(c),f(f),nx(nx) {}
} E[MAXM];
int G[MAXN],cur[MAXN],pre[MAXN],dis[MAXN],gap[MAXN],N,sz;
void init(int _n)
{
N=_n,sz=0; memset(G,-1,sizeof(G[0])*N);
}
void link(int u,int v,int c)
{
E[sz]=Edge(v,c,0,G[u]); G[u]=sz++;
E[sz]=Edge(u,0,0,G[v]); G[v]=sz++;
}
bool bfs(int S,int T)
{
static int Q[MAXN]; memset(dis,-1,sizeof(dis[0])*N);
dis[S]=0; Q[0]=S;
for (int h=0,t=1,u,v,it;h<t;++h)
{
for (u=Q[h],it=G[u];~it;it=E[it].nx)
{
if (dis[v=E[it].v]==-1&&E[it].c>E[it].f)
{
dis[v]=dis[u]+1; Q[t++]=v;
}
}
}
return dis[T]!=-1;
}
int dfs(int u,int T,int low)
{
if (u==T) return low;
int ret=0,tmp,v;
for (int &it=cur[u];~it&&ret<low;it=E[it].nx)
{
if (dis[v=E[it].v]==dis[u]+1&&E[it].c>E[it].f)
{
if (tmp=dfs(v,T,min(low-ret,E[it].c-E[it].f)))
{
ret+=tmp; E[it].f+=tmp; E[it^1].f-=tmp;
}
}
}
if (!ret) dis[u]=-1; return ret;
}
int dinic(int S,int T)
{
int maxflow=0,tmp;
while (bfs(S,T))
{
memcpy(cur,G,sizeof(G[0])*N);
while (tmp=dfs(S,T,inf)) maxflow+=tmp;
}
return maxflow;
}
} using namespace NetFlow; void My_init(){
for(int i = 1 ; i <= n ; ++ i) head[i] = -1 , dp1[i].first = 1<<29 , dp2[i].first = 1<<29 , flag[i] = 0;
tot = 0;
} void Edge_link(int u , int v , int w){
e[tot].v=v,e[tot].nxt=head[u],e[tot].w=w,head[u]=tot++;
} void Dijkstra( int start , pair < int , int > * p ){
priority_queue<node>Q;
Q.push(node( start , 0 , 0 ));
p[start]=make_pair(0,0);
while(!Q.empty()){
node S = Q.top() ; Q.pop();
int x = S.x;
pair < int , int > Ls = make_pair( S.y , S.z );
if( Ls != p[x] ) continue;
for(int i = head[x] ; ~i ; i = e[i].nxt){
int v = e[i].v;
int w = e[i].w;
pair < int , int > newLs = make_pair( Ls.first + w , Ls.second + 1 );
if( newLs.first < p[v].first || (newLs.first == p[v].first && newLs.second < p[v].second)){
p[v] = newLs;
Q.push( node( v , newLs.first , newLs.second ) );
}
}
}
} int main(int argc,char *argv[]){
while( ~ scanf("%d%d" , &n , &m ) ){
My_init();
for(int i = 1 ; i <= m ; ++ i){
int u , v , w;
scanf("%d%d%d",&u,&v,&w);
E1[i]=u,E2[i]=v,E3[i]=w;
Edge_link( u , v , w );
Edge_link( v , u , w );
}
Dijkstra( 1 , dp1 );
Dijkstra( n , dp2 );
int mincost = dp1[n].first;
init( n + 4 );
for(int i = 1 ; i <= m ; ++ i)
{
if(dp1[E1[i]].first + dp2[E2[i]].first + E3[i] == mincost)
link(E1[i],E2[i],1);
if(dp2[E1[i]].first + dp1[E2[i]].first + E3[i] == mincost)
link(E2[i],E1[i],1);
}
printf("%d %d\n" , dinic( 1 , n ) , m - dp1[n].second );
}
return 0;
}

HDU 5294 Tricks Device 网络流 最短路的更多相关文章

  1. HDU 5294 Tricks Device (最短路,最大流)

    题意:给一个无向图(连通的),张在第n个点,吴在第1个点,‘吴’只能通过最短路才能到达‘张’,两个问题:(1)张最少毁掉多少条边后,吴不可到达张(2)吴在张毁掉最多多少条边后仍能到达张. 思路:注意是 ...

  2. HDU 5294 Tricks Device (最大流+最短路)

    题目链接:HDU 5294 Tricks Device 题意:n个点,m条边.而且一个人从1走到n仅仅会走1到n的最短路径.问至少破坏几条边使原图的最短路不存在.最多破坏几条边使原图的最短路劲仍存在 ...

  3. hdu 5294 Tricks Device 最短路建图+最小割

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Tricks Device Time Limit: 2000/1000 MS (Java/Other ...

  4. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  5. HDU 5294 Tricks Device 最短路+最大流

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5294 题意: 给你个无向图: 1.求最少删除几条边就能破坏节点1到节点n的最短路径, 2.最多能删除 ...

  6. hdu 5294 Tricks Device(2015多校第一场第7题)最大流+最短路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294   题意:给你n个墓室,m条路径,一个人在1号墓室(起点),另一个人在n号墓室(终点),起点的那 ...

  7. SPFA+Dinic HDOJ 5294 Tricks Device

    题目传送门 /* 题意:一无向图,问至少要割掉几条边破坏最短路,问最多能割掉几条边还能保持最短路 SPFA+Dinic:SPFA求最短路时,用cnt[i]记录到i最少要几条边,第二个答案是m - cn ...

  8. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  9. HDU5294——Tricks Device(最短路 + 最大流)

    第一次做最大流的题目- 这题就是堆模板 #include <iostream> #include <algorithm> #include <cmath> #inc ...

随机推荐

  1. 工具===代替cmd的conemu设置

    conemu设置 Win+Alt+P进入设置界面,字体设置: 隐藏右上角菜单和窗口标题. (Ctrl + ~ 隐藏/显示terminal) 设置背景图片 避免误操作,关闭/新建确认 设置win+w默认 ...

  2. 105.Construct Binary Tree from Preorder and Inorder Traversal---《剑指offer》面试6

    题目链接 题目大意:根据先序遍历和中序遍历构造二叉树. 法一:DFS.根据模拟步骤,直接从先序和中序数组中找值然后加入二叉树中,即先从先序数组中确定根结点,然后再去中序数组中确定左子树和右子树的长度, ...

  3. 【bzoj3223】文艺平衡树

    #include<bits/stdc++.h> #define N 300005 #define rat 4 using namespace std; struct Node{ int s ...

  4. printf格式化输出

    基本格式 printf [format] [文本1] [文本2] .. 常用格式替换符 %s 字符串 %f 浮点格式 %c ASCII字符,即显示对应参数的第一个字符 %d,%i 十进制整数 %o 八 ...

  5. jstorm系列-1:入门

    一.             Storm整体介绍 Storm 是一个类似Hadoop MapReduce的系统, 用户按照指定的接口实现一个任务,然后将这个任务递交给JStorm系统,Jstorm将这 ...

  6. 面试题之实现系统函数系列一:实现memmove函数

    编译环境 本系列文章所提供的算法均在以下环境下编译通过. [算法编译环境]Federa 8,linux 2.6.35.6-45.fc14.i686 [处理器] Intel(R) Core(TM)2 Q ...

  7. Xshell 找到上次执行的命令

    ctrl + p   返回上一次输入命令字符 ctrl + r       输入单词搜索历史命令

  8. hadoop3.1 ha高可用部署

    1.资源角色规划

  9. Restful Framework (三)

    目录 一.版本 二.解析器 三.序列化 四.请求数据验证 一.版本 回到顶部 程序也来越大时,可能通过版本不同做不同的处理 没用rest_framework之前,我们可以通过以下这样的方式去获取. c ...

  10. MySQL-数据操作

    阅读目录 一 介绍 二 插入数据INSERT 三 更新数据UPDATE 四 删除数据DELETE 五 查询数据SELECT 回到顶部 一 介绍 MySQL数据操作: DML ============= ...