网站行为跟踪 Website Activity Tracking Log Aggregation 日志聚合 In comparison to log-centric systems like Scribe or Flume
网站行为跟踪 Website Activity Tracking
访客信息处理
Log Aggregation 日志聚合
Apache Kafka http://kafka.apache.org/uses
In comparison to log-centric systems like Scribe or Flume Scribe or Flume 是以日志处理为中心
Use cases
Here is a description of a few of the popular use cases for Apache Kafka®. For an overview of a number of these areas in action, see this blog post.
Messaging
Kafka works well as a replacement for a more traditional message broker. Message brokers are used for a variety of reasons (to decouple processing from data producers, to buffer unprocessed messages, etc). In comparison to most messaging systems Kafka has better throughput, built-in partitioning, replication, and fault-tolerance which makes it a good solution for large scale message processing applications.
In our experience messaging uses are often comparatively low-throughput, but may require low end-to-end latency and often depend on the strong durability guarantees Kafka provides.
In this domain Kafka is comparable to traditional messaging systems such as ActiveMQ or RabbitMQ.
Website Activity Tracking
The original use case for Kafka was to be able to rebuild a user activity tracking pipeline as a set of real-time publish-subscribe feeds. This means site activity (page views, searches, or other actions users may take) is published to central topics with one topic per activity type. These feeds are available for subscription for a range of use cases including real-time processing, real-time monitoring, and loading into Hadoop or offline data warehousing systems for offline processing and reporting.
Activity tracking is often very high volume as many activity messages are generated for each user page view.
Metrics
Kafka is often used for operational monitoring data. This involves aggregating statistics from distributed applications to produce centralized feeds of operational data.
Log Aggregation
Many people use Kafka as a replacement for a log aggregation solution. Log aggregation typically collects physical log files off servers and puts them in a central place (a file server or HDFS perhaps) for processing. Kafka abstracts away the details of files and gives a cleaner abstraction of log or event data as a stream of messages. This allows for lower-latency processing and easier support for multiple data sources and distributed data consumption. In comparison to log-centric systems like Scribe or Flume, Kafka offers equally good performance, stronger durability guarantees due to replication, and much lower end-to-end latency.
Stream Processing
Many users of Kafka process data in processing pipelines consisting of multiple stages, where raw input data is consumed from Kafka topics and then aggregated, enriched, or otherwise transformed into new topics for further consumption or follow-up processing. For example, a processing pipeline for recommending news articles might crawl article content from RSS feeds and publish it to an "articles" topic; further processing might normalize or deduplicate this content and published the cleansed article content to a new topic; a final processing stage might attempt to recommend this content to users. Such processing pipelines create graphs of real-time data flows based on the individual topics. Starting in 0.10.0.0, a light-weight but powerful stream processing library called Kafka Streams is available in Apache Kafka to perform such data processing as described above. Apart from Kafka Streams, alternative open source stream processing tools include Apache Storm and Apache Samza.
Event Sourcing
Event sourcing is a style of application design where state changes are logged as a time-ordered sequence of records. Kafka's support for very large stored log data makes it an excellent backend for an application built in this style.
Commit Log
Kafka can serve as a kind of external commit-log for a distributed system. The log helps replicate data between nodes and acts as a re-syncing mechanism for failed nodes to restore their data. The log compaction feature in Kafka helps support this usage. In this usage Kafka is similar to Apache BookKeeper project.
网站行为跟踪 Website Activity Tracking Log Aggregation 日志聚合 In comparison to log-centric systems like Scribe or Flume的更多相关文章
- 1.2 Use Cases中 Website Activity Tracking官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Website Activity Tracking 网站活动追踪 The origi ...
- 1.2 Use Cases中 Log Aggregation官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Log Aggregation 日志聚合 Many people use Kafka ...
- /VAR/LOG/各个日志文件分析
/VAR/LOG/各个日志文件分析 author:headsen chen 2017-10-24 18:00:24 部分内容取自网上搜索,部分内容为自己整理的,特此声明. 1. /v ...
- 超酷的实时颜色数据跟踪javascript类库 - Tracking.js
来源:GBin1.com 今天介绍这款超棒的Javascript类库是 - Tracking.js,它能够独立不依赖第三方类库帮助开发人员动态跟踪摄像头输出相关数据. 这些数据包括了颜色或者是人, 这 ...
- SQL Server 更改跟踪(Chang Tracking)监控表数据
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 主要区别与对比(Compare) 实现监控表数据步骤(Process) 参考文献(Refere ...
- 【转载,备忘】SQL Server 更改跟踪(Chang Tracking)监控表数据
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 主要区别与对比(Compare) 实现监控表数据步骤(Process) 参考文献(Refere ...
- /var/log各种日志
文章为装载 1)/var/log/secure:记录登录系统存取数据的文件;例如:pop3,ssh,telnet,ftp等都会记录在此. 2)/ar/log/btmp:记录登录这的信息记录,被编码过, ...
- logback的使用和logback.xml详解,在Spring项目中使用log打印日志
logback的使用和logback.xml详解 一.logback的介绍 Logback是由log4j创始人设计的另一个开源日志组件,官方网站: http://logback.qos.ch.它当前分 ...
- SharePoint ULS Log Viewer 日志查看器
SharePoint ULS Log Viewer 日志查看器 项目描写叙述 这是一个Windows应用程序,更加轻松方便查看SharePoint ULS日志文件.支持筛选和简单的视图. 信息 这是一 ...
随机推荐
- winform最小化及关闭提示
public PrintService() { InitializeComponent(); this.WindowState = FormWindowState.Minimized; } priva ...
- tit.Atitit. http 代理原理 atiHttpProxy 大木马 h
Atitit. http 代理原理 atiHttpProxy 大木马 1. 面这张图可以清晰地阐明HttpProxy的实现原理:1 2. 代理服务器用途1 3. 其中流程具体如下:2 4. 设计规 ...
- ManipulationStarted,ManipulationCompleted,ManipulationDelta
一.获取某个元素相对另一元素的相对位置 1.使用TransformToVisual获取某个元素相对于另外一个元素的偏移量. 例如:要获得rect相对于LayoutRoot的偏移量,就将LayoutRo ...
- linux下时间操作1
本文是对我之前写的文章:C++时间操作 的更深入补充.之前那个文章就是一个快速入门的东西,后面力图把一些更深入的细节补充完整. 时间分类的基本介绍 在介绍一些时间相关的操作函数之前,先来介绍一下lin ...
- 发现一个nginx LUA开发Web App的框架
nginx是个好东西, nginx的openrtsy发行版本更是个好东西. 今天又发现个好东西 :Moochine MOOCHINE - 一个简单的轻量级的web framework, 基于ngx_O ...
- 0047 Spring的AOP入门基础--切面组件--通知--切入点
AOP的全称是Aspect Oriented Programming,面向切面编程. 切面是什么呢,就是一个Java类.之所以叫切面,就是说在调用其他一些类的方法的某个时候(之前,之后,抛异常等),调 ...
- 使用淘宝 NPM 镜像
http://www.runoob.com/nodejs/nodejs-npm.html ************************************** 大家都知道国内直接使用 npm ...
- iOS swift HandyJSON组合Alamofire发起网络请求并转换成模型
在swift开发中,发起网络请求大部分开发者应该都是使用Alamofire发起的网络请求,至于请求完成后JSON解析这一块有很多解决方案,我们今天这里使用HandyJSON来解析请求返回的数据并转化成 ...
- EMQ进行HttpApi登录问题
今天进行EMQ http api调用的时候遇到一个问题,一直弹出登录验证框 在官网资料中也找不到相关的接口,如下图: 以前也经常看到这种登录,不过我这里没有用程序去调用过这样类似的接口. 后来我想到经 ...
- Linux下vi命令小结
进入vi的命令 vi filename :打开或新建文件,并将光标置于第一行首 vi n filename :打开文件,并将光标置于第n行首 vi filename :打 ...