【BZOJ4373】算术天才⑨与等差数列 [线段树]
算术天才⑨与等差数列
Time Limit: 10 Sec Memory Limit: 128 MB
[Submit][Status][Discuss]
Description
算术天才⑨非常喜欢和等差数列玩耍。
有一天,他给了你一个长度为n的序列,其中第i个数为a[i]。
他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列。
当然,他还会不断修改其中的某一项。
为了不被他鄙视,你必须要快速并正确地回答完所有问题。
注意:只有一个数的数列也是等差数列。
Input
第一行包含两个正整数n,m,分别表示序列的长度和操作的次数。
第二行包含n个整数,依次表示序列中的每个数a[i]。
接下来m行,每行一开始为一个数op,
若op=1,则接下来两个整数x,y,表示把a[x]修改为y。
若op=2,则接下来三个整数l,r,k,表示一个询问。
在本题中,x,y,l,r,k都是经过加密的,都需要异或你之前输出的Yes的个数来进行解密。
Output
输出若干行,对于每个询问,如果可以形成等差数列,那么输出Yes,否则输出No。
Sample Input
1 3 2 5 6
2 1 5 1
1 5 4
2 1 5 1
Sample Output
Yes
HINT
1<=n,m<=300000, 0<=a[i]<=10^9, 1<=x<=n,0<=y<=10^9, 1<=l<=r<=n, 0<=k<=10^9
Solution
显然,如果可以组成等差数列,首项必定是区间最小值。这样我们就知道了要求的等差数列的首项和公差。
一个首先的想法就是:我们判断一下区间和是否等于所要求的等差数列的和。
但是这样显然是不够的,那么怎么办呢?我们试想:能否求出所要求的等差数列的平方和?
显然公差为 1 的时候用平方和公式计算,剩下公差不是 1 的时候我们轻易推一下式子即可。

那么我们只要用线段树维护一下:区间最小值、区间和、区间平方和即可,资磁单点修改。
正确性不会证明啊,但是满足的概率应该挺大的吧qwq
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std;
typedef long long s64; const int ONE = ;
const int INF = 1e9+; int n, T;
s64 a[ONE];
int opt, x, y, d;
int num; struct power
{
s64 sumx, sumxx, minx;
}Node[ONE * ], res; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Renew(int i)
{
int a = i<<, b = i<<|;
Node[i].sumx = Node[a].sumx + Node[b].sumx;
Node[i].sumxx = Node[a].sumxx + Node[b].sumxx;
Node[i].minx = min(Node[a].minx, Node[b].minx);
} void Build(int i, int l, int r)
{
Node[i].minx = INF;
if(l == r)
{
Node[i].minx = a[l];
Node[i].sumx = a[l];
Node[i].sumxx = a[l] * a[l];
return;
} int mid = l + r >> ;
Build(i<<, l, mid); Build(i<<|, mid+, r);
Renew(i);
} void Update(int i, int l, int r, int L, s64 x)
{
if(l > r) return;
if(L == l && l == r)
{
Node[i].minx = x;
Node[i].sumx = x;
Node[i].sumxx = x * x;
return;
} int mid = l + r >> ;
if(L <= mid) Update(i<<, l, mid, L, x);
else Update(i<<|, mid+, r, L, x);
Renew(i);
} void Query(int i, int l, int r, int L, int R)
{
if(L <= l && r <= R)
{
res.minx = min(res.minx, Node[i].minx);
res.sumx += Node[i].sumx;
res.sumxx += Node[i].sumxx;
return;
} int mid = l + r >> ;
if(L <= mid) Query(i<<, l, mid, L, R);
if(mid+ <= R) Query(i<<|, mid+, r, L, R);
} s64 Calc_sumx(s64 a0, s64 n, s64 d)
{
s64 an = a0 + (n-) * d;
return (a0 + an) * n / ;
} s64 Calc_sumxx(s64 a0, s64 n, s64 d)
{
s64 item1 = n * a0 * a0;
s64 item2 = * a0 * d * n * (n-) / ;
s64 item3 = d * d * (n * (n+) * (*n+) / - n*n);
return item1 + item2 + item3;
} int main()
{
n = get(); T = get();
for(int i=; i<=n; i++)
a[i] = get();
Build(, , n); while(T--)
{
opt = get();
x = get() ^ num; y = get() ^ num; if(opt == )
{
Update(, , n, x, y);
continue;
}
else
{
d = get() ^ num;
res.minx = INF;
res.sumx = res.sumxx = ;
Query(, , n, x, y); if(res.sumx == Calc_sumx(res.minx, y-x+, d))
if(res.sumxx == Calc_sumxx(res.minx, y-x+, d))
{
printf("Yes\n");
num++;
continue;
} printf("No\n");
}
} }
【BZOJ4373】算术天才⑨与等差数列 [线段树]的更多相关文章
- [BZOJ4373]算术天才⑨与等差数列(线段树)
[l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...
- bzoj4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...
- BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)
题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...
- 【BZOJ4373】算术天才⑨与等差数列 线段树+set
[BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...
- BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)
mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...
- BZOJ 4373算术天才⑨与等差数列(线段树)
题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...
- BZOJ 4373: 算术天才⑨与等差数列 线段树
Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...
- bzoj 4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...
- BZOJ4373 算术天才⑨与等差数列 【线段树】*
BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...
随机推荐
- 安装Tensorflow过程pip安装报错:is not a supported wheel on this platform
安装Tensorflow过程pip安装报错:is not a supported wheel on this platform 通过pip安装wheel镜像时,安装指令为: pip install - ...
- TCP系列13—重传—3、协议中RTO计算和RTO定时器维护
从上一篇示例中我们可以看到在TCP中有一个重要的过程就是决定何时进行超时重传,也就是RTO的计算更新.由于网络状况可能会受到路由变化.网络负载等因素的影响,因此RTO也必须跟随网络状况动态更新.如果T ...
- 3ds Max学习日记(八)
再来更新一波学习进度. 之前玩了一下3dsmax里的灯光,不过由于和教程里的版本不同,教程里的我的没有,我有的教程又没有,所以只能瞎jb玩一玩. 最近又想建个人物模型玩玩,于是上网搜一下有 ...
- 敏捷冲刺Day2
一. 每日会议 1. 照片 2. 昨日完成工作 网页设计与实现的完善 服务器的搭建前期--申请域名 激活域名 搭建服务器 分析接下来的任务与进度 总结前两天的工作 对产品的进一步展望 3. 今日完成工 ...
- Python2中编码错误---éç»äººè¡¨ç®çé¿å ååè¶(æå格式转化为UTF-8
在python2的使用中,总会遇到各种各样的编码问题,这也是使用Python2最头疼的一件事情,幸好python3解决了编码的问题. 下面我在爬虫时遇到的类似éç»äººè¡¨ç®çé¿ ...
- 第64天:CSS常用命名规范,有用!
CSS常用命名,必须记住 一.常用命名 标题:title 摘要:summary 箭头:arrow 商标:label 网站标志:logo 转角/圆角:corner 横幅广告:banner 子菜单:sub ...
- asp.net mvc4中Json的应用
做一个简单的 Json实例,从页面获取后台的Json数据 1.控制台: public class HomeController : Controller { // // GET: /Home/ pub ...
- C++除法运算 // 静态断言
1.C++中"/"运算:对两个整数做除法,结果仍为整数,如果它的商包含小数部分,则小树部分会被截除. C++ Primer 第五章 P130 2.静态断言(static_asser ...
- P3074 [USACO13FEB]牛奶调度Milk Scheduling
题目描述 Farmer John's N cows (1 <= N <= 10,000) are conveniently numbered 1..N. Each cow i takes ...
- Python高级数据类型模块collections
collections模块提供更加高级的容器数据类型,替代Python的内置dict,list, set,和tuple Counter对象 提供计数器,支持方便和快速的计数.返回的是一个以元素为键, ...