C - NP-Hard Problem

Description

Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e.  or  (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains kintegers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Sample Input

Input
4 2
1 2
2 3
Output
1
2
2
1 3
Input
3 3
1 2
2 3
1 3
Output
-1
题意:给出点的个数和连接这些点的边(给你个无向图),判断是否能构成二分图,如果能就输出左右集合,不能输出-1.
分析:
二分图的定义:有两个顶点集且每条边的两个点分别位于两个集合,每个集合中不能含有一条完整的边。
二分图的判断方法:先对任意一条没有染色的点进行染色,再判断与其相邻的点是否染色,如果没有染色就对其染上与其相邻的 点不同的颜色,如果有染色且颜色与其相邻点的颜色相同就不是二分图,若颜色不同就继续判断(用bfs)。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = + ;
vector<int>g[maxn],v[];
bool ok = true;
int color[maxn];
void dfs(int k,int c){
if(!ok)return;
if (color[k] != -){
if (color[k] != c) ok=false;
return;
}
int len = g[k].size();
if(len!=)
{
color[k] = c;
v[c].push_back(k);
}
for (int i = ; i < len; ++i) dfs(g[k][i],c^);
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for (int i = ; i < m; ++i){
int u,w;
scanf("%d%d",&u,&w);
g[u].push_back(w);
g[w].push_back(u);
}
memset(color,-,sizeof color);
for (int i = ; i <= n; ++i){
if (color[i] == -)dfs(i,);
}
if (!ok)printf("-1\n");
else {
for (int i = ; i < ; ++i)
{
int len = v[i].size();
printf("%d\n",len);
for (int j = ; j < len; ++j){
if (j)printf(" ");
printf("%d",v[i][j]);
}
printf("\n");
}
}
return ;
}
 

codeforces 360 C的更多相关文章

  1. [codeforces 360]A. Levko and Array Recovery

    [codeforces 360]A. Levko and Array Recovery 试题描述 Levko loves array a1, a2, ... , an, consisting of i ...

  2. codeforces 360 E - The Values You Can Make

    E - The Values You Can Make Description Pari wants to buy an expensive chocolate from Arya. She has  ...

  3. codeforces 360 D - Remainders Game

    D - Remainders Game Description Today Pari and Arya are playing a game called Remainders. Pari choos ...

  4. 套题 codeforces 360

    A题:Opponents 直接模拟 #include <bits/stdc++.h> using namespace std; ]; int main() { int n,k; while ...

  5. codeforces 360 C - NP-Hard Problem

    原题: Description Recently, Pari and Arya did some research about NP-Hard problems and they found the  ...

  6. codeforces 360 B

    B - Levko and Array 题目大意:给你你个长度为n的数列a,你最多改变k个值,max{ abs ( a[ i + 1] - a[ i ] ) } 的最小值为多少. 思路:这个题很难想到 ...

  7. Codeforces Round #360 div2

    Problem_A(CodeForces 688A): 题意: 有d天, n个人.如果这n个人同时出现, 那么你就赢不了他们所有的人, 除此之外, 你可以赢他们所有到场的人. 到场人数为0也算赢. 现 ...

  8. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  9. Codeforces Round #360 (Div. 2) D. Remainders Game 数学

    D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...

随机推荐

  1. MySQL备份mydumper的原理

    本文来自:http://baiyangtx.net/2016/09/04/mydumper-principle/ 相对于MySQL官方提供的逻辑备份工具 mysqldump , mydumper最大的 ...

  2. Android导包导致java.lang.NoClassDefFoundError

    摘要: SDK方法总数是不能超过65k的.是否也引入其他的三方库,导致总数超过限制.超出限制会导致部分class找不到,引发java.lang.NoClassDefFoundError.解决方法:近日 ...

  3. STM32 IIC

    #include "Type.h" #include "IIC.h" #include "Delay.h" void I2C_Init(vo ...

  4. ios app内嵌入http服务器

    1.采用CocoaHTTPServer https://github.com/robbiehanson/CocoaHTTPServer 2.采用MongooseDaemon https://githu ...

  5. WPF如何控制每个窗体确保只打开一次

    在主窗体上点击菜单时,如果做到每个窗体不会被重复打开,如果打开了,可以将其重新获得焦点. 首先在主窗体中将菜单关联的窗体实例化. 第二步:将每个菜单对应窗体的closing事件重写.之所以要重写clo ...

  6. PHP预定义接口之 ArrayAccess

    最近这段时间回家过年了,博客也没有更新,感觉少学习了好多东西,也错失了好多的学习机会,就像大家在春节抢红包时常说的一句话:一不留神错过了好几亿.废话少说,这篇博客给大家说说关于PHP预定义接口中常用到 ...

  7. httpclient 使用方式介绍

    第一:Get方式请求 package com.hct; import java.io.BufferedReader; import java.io.IOException; import java.i ...

  8. 【leetcode】Intersection of Two Linked Lists

    题目简述: Write a program to find the node at which the intersection of two singly linked lists begins. ...

  9. PLSQL操作excel

    一.plsql数据库操作: 删除数据前备份一张表: create table plat_counter_def_bf as select * from plat_monitor_counter_def ...

  10. 使用 CommandLineApplication 类创建专业的控制台程序

    闲话 在很久很久以前,电脑是命令行/终端/控制台的天下,那屏幕上的光标在行云流水般的键盘敲击下欢快地飞跃着,那一行行的字符输出唰唰唰地滚动着--直到 Windows 95 的出现(那时候我还不知道苹果 ...