题意

给你长度为$n$的序列,序列中的每个元素$i$有一个区间限制$[l_i,r_i]$,你从中选出一个子序列,并给它们标号$x_i$,要求满足 $,∀i<j,x_i<x_j$,且$, ∀i,x_i∈[l_i,r_i]$。 问满足条件子序列的长度最长为多少?

其中$1\leq n\leq3\times 10^5\ 1\leq l_i\leq r_i\leq 10^9$

题解

不妨设$f[i][j]$表示已经选到第$i$个,其中最大值为$j$最多能选几个。

显然是开不下的...但是还记得$O(nlogn)$的$LIS$吗?它利用了二分栈!

所以我们不妨考虑设$f[i][j]$表示当前选到第$i$个,已经选了$j$个的末尾最小元素。

如果不选,显然$f[i+1][j]=f[i][j]$

如果$r[i+1]>f[i][j]$,那么,则有$f[i+1][j+1]=max(f[i][j]+1,l[i+1])$

不难发现可以用滚动数组滚掉第一维,所以第一个方程直接作废:

$ f[j+1]=max(f[j]+1,l[i+1]) $

但是时间还是$O(n^2)$的啊,枚举一个$i$,枚举一个$j$。

不急,咱们分开考虑,对于一个$l[i]<f<r[i]$

它的当前$dp$值可以直接$+1$,那么位置也将$+1$因为多选了一个嘛。

剩下的话,就是$f<l[i]$的情况,直接就等于$l[i]$了。

用一颗$FHQ-Treap$维护一下就行了。

$PS$:注意数组开两倍(最开始$n$个以及$dp$中的$n$个新节点)

#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm> template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 6e5 + 10, Inf = 1e9 + 7;
int n, l, r;
int rt, tot, val[N], add[N], lc[N], rc[N], pri[N]; inline int node(int x) { val[++tot] = x, pri[tot] = rand(); return tot; }
inline void pushdown(int o) {
if(add[o]) {
val[o] += add[o];
if(lc[o]) add[lc[o]] += add[o];
if(rc[o]) add[rc[o]] += add[o];
add[o] = 0;
}
}
int merge(int l, int r) {
if(!l || !r) return l + r;
pushdown(l), pushdown(r);
if(pri[l] < pri[r]) { rc[l] = merge(rc[l], r); return l; }
else { lc[r] = merge(l, lc[r]); return r; }
}
void split(int o, int k, int &l, int &r) {
if(!o) { l = r = 0; return ; } pushdown(o);
if(val[o] <= k) l = o, split(rc[o], k, rc[o], r);
else r = o, split(lc[o], k, l, lc[o]);
}
int min(int o) { pushdown(o); return lc[o] ? min(lc[o]) : val[o]; }
int calc(int o) {
if(!o) return 0; pushdown(o);
return calc(lc[o]) + calc(rc[o]) + (val[o] < Inf);
} int main () {
read(n), srand(19260817); int x, y, k, p;
for(int i = 1; i <= n; ++i) rt = merge(rt, node(Inf));
for(int i = 1; i <= n; ++i) {
read(l), read(r);
split(rt, l - 1, x, y), split(y, r - 1, k, y);
if(k) ++add[k];
split(y, min(y), p, y);
rt = merge(merge(merge(x, node(l)), k), y);
} printf("%d\n", calc(rt));
return 0;
}

CodeForces 809D Hitchhiking in the Baltic States(FHQ-Treap)的更多相关文章

  1. Codeforces 809D. Hitchhiking in the Baltic States

    Description 给出 \(n\) 个数 \(a_i\),每一个数有一个取值 \([l_i,r_i]\) ,你来确定每一个数,使得 \(LIS\) 最大 题面 Solution 按照平时做法,设 ...

  2. 【CF809D】Hitchhiking in the Baltic States(Splay,动态规划)

    [CF809D]Hitchhiking in the Baltic States(Splay,动态规划) 题面 CF 洛谷 题解 朴素\(dp\):设\(f[i][j]\)表示当前考虑到第\(i\)个 ...

  3. 可持久化treap(FHQ treap)

    FHQ treap 的整理 treap = tree + heap,即同时满足二叉搜索树和堆的性质. 为了使树尽可能的保证两边的大小平衡,所以有一个key值,使他满足堆得性质,来维护树的平衡,key值 ...

  4. BZOJ3159: 决战(FHQ Treap)

    传送门: 解题思路: 算是补坑了,这题除了Invert以外就可以树剖线段树解决了. 考虑Invert操作,延续先前树链剖分的做法,考虑先前算法的瓶颈. 最暴力的方法是暴力交换权值,然而这种方法忽略了当 ...

  5. CF 809D Hitchhiking in the Baltic States——splay+dp

    题目:http://codeforces.com/contest/809/problem/D 如果值是固定的,新加入一个值,可以让第一个值大于它的那个长度的值等于它. 如今值是一段区间,就对区间内的d ...

  6. bzoj千题计划222:bzoj2329: [HNOI2011]括号修复(fhq treap)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2329 需要改变的括号序列一定长这样 :)))((( 最少改变次数= 多余的‘)’/2 [上取整] + ...

  7. bzoj千题计划221:bzoj1500: [NOI2005]维修数列(fhq treap)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1500 1.覆盖标记用INF表示无覆盖标记,要求可能用0覆盖 2.代表空节点的0号节点和首尾的两个虚拟 ...

  8. 洛谷P3391 【模板】文艺平衡树(Splay)(FHQ Treap)

    题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...

  9. LOJ#120. 持久化序列(FHQ Treap)

    题面 传送门 题解 可持久化\(Treap\)搞一搞 //minamoto #include<bits/stdc++.h> #define R register #define inlin ...

随机推荐

  1. 【C++ STL】Map和Multimap

    1.结构 Map和multimap将key/value pair(键值/实值 队组)当作元素,进行管理.他们根据key的排序准则将元素排序.multimap允许重复元素,map不允许. 元素要求: k ...

  2. loj515 「LibreOJ β Round #2」贪心只能过样例

    传送门:https://loj.ac/problem/515 [题解] 容易发现S最大到1000000. 于是我们有一个$O(n^2*S)$的dp做法. 容易发现可以被bitset优化. 于是复杂度就 ...

  3. 【BZOJ】2151 种树

    [算法]贪心+堆 [题意]n个数字的序列,要求选择互不相邻的k个数字使和最大. [题解] 贪心,就是按一定顺序选取即可最优,不会反悔. 考虑第一个数字选择权值最大的,那么它相邻的两个数字就不能选择,那 ...

  4. UIControl事件---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址: iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 UIControl事件1.UIControlEventTouchDown单点触摸按下 ...

  5. vue清空input file

    input file是只读的,给form一个id,用form.reset()干掉里面input的值 document.getElementById("uploadForm")&am ...

  6. Win7(64bit)搭建SVN

    开始: 第一步:下载SVN客户端程序TortoiseSVN并安装(不习惯英文操作界面的顺便在最底下下载一个语言包),下载地址tortoiseSVN下载(由于系统是64位的,我下载的是TortoiseS ...

  7. 数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作

    AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树.   2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1).   也就是说,AVL树,本质上 ...

  8. C高级 框架开发中红黑树结构

    引言  -- 红黑树历史 红黑树是数据结构学习中一道卡. 底层库容器中必不可少的算法. 历经各种实战运用,性能有保障. 同样红黑树不好理解, 就算理解了, 代码也不好写. 就算写了, 工程库也难构建. ...

  9. Geoserver发布缓存切片(制定Gridsets)

    EPSG:4326 Level Pixel Size Scale Name Tiles   0 1: 2 x 1   1 1: 4 x 2   2 1: 8 x 4   3 1: 16 x 8   4 ...

  10. 在一个Ubuntu系统上配置Apache支持多个站点

    查看原文请访问:http://codewenda.com/ubuntu16-04%E9%85%8D%E7%BD%AEapache%E6%94%AF%E6%8C%81%E5%A4%9A%E4%B8%AA ...