将每个人跑步的路径拆分成x->lca,lca->y两条路径分别考虑:

对于在点i的观察点,这个人(s->t)能被观察到的充要条件为:

1.直向上的路径:w[i]=dep[s]-dep[i],移项得w[i]+dep[i]=dep[s]

2.直向下的路径:w[i]=dep[s]-dep[lca]+dep[i]-dep[lca],移项得w[i]-dep[i]=dep[s]-2*dep[lca]。

问题转化为,对每个点i,统计它的子树中有多少个点x满足dep[x]=w[i]+dep[i]或dep[x]-2*dep[lca]=w[i]-dep[i],这是经典的线段树合并问题。

注意到并不是子树中所有满足条件的点都能被统计,因为有的点还没到观察点就往下跑了(lca深度大于当前观察点),差分解决。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson ls[x],L,mid
#define rson rs[x],mid+1,R
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=,M=;
int n,m,u,v,cnt,s,t,w[N],d[N],ans[N],fa[N][],h[N],nxt[N<<],to[N<<];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } struct T{
int nd,v[M],ls[M],rs[M],rt[N];
void ins(int &x,int L,int R,int pos,int k){
if (!x) x=++nd;
if (L==R){ v[x]+=k; return; }
int mid=(L+R)>>;
if (pos<=mid) ins(lson,pos,k); else ins(rson,pos,k);
} int merge(int x,int y,int L,int R){
if (!x || !y) return x+y;
if (L==R) { v[x]+=v[y]; return x; }
int mid=(L+R)>>;
ls[x]=merge(ls[x],ls[y],L,mid);
rs[x]=merge(rs[x],rs[y],mid+,R);
return x;
} int que(int x,int L,int R,int pos){
if (!x) return ;
if (L==R) return v[x];
int mid=(L+R)>>;
if (pos<=mid) return que(lson,pos); else return que(rson,pos);
}
}T1,T2; void dfs(int x){
rep(i,,) fa[x][i]=fa[fa[x][i-]][i-];
For(i,x) if ((k=to[i])!=fa[x][]) fa[k][]=x,d[k]=d[x]+,dfs(k);
} void dfs2(int x){
For(i,x) if ((k=to[i])!=fa[x][]){
dfs2(k);
T1.rt[x]=T1.merge(T1.rt[x],T1.rt[k],,n);
T2.rt[x]=T2.merge(T2.rt[x],T2.rt[k],,*n);
}
ans[x]+=(w[x]+d[x]>= && w[x]+d[x]<=n) ? T1.que(T1.rt[x],,n,w[x]+d[x]) : ;
ans[x]+=(w[x]-d[x]>=-n && w[x]-d[x]<=n) ? T2.que(T2.rt[x],,*n,w[x]-d[x]+n) : ;
} int Lca(int x,int y){
if (d[x]<d[y]) swap(x,y);
int t=d[x]-d[y];
for (int i=; ~i; i--) if (t&(<<i)) x=fa[x][i];
if (x==y) return x;
for (int i=; ~i; i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][];
} int main(){
freopen("running.in","r",stdin);
freopen("running.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) scanf("%d%d",&u,&v),add(u,v),add(v,u);
rep(i,,n) scanf("%d",&w[i]);
dfs();
rep(i,,m){
scanf("%d%d",&s,&t); int lca=Lca(s,t);
T1.ins(T1.rt[s],,n,d[s],); T1.ins(T1.rt[fa[lca][]],,n,d[s],-);
T2.ins(T2.rt[t],,*n,d[s]-*d[lca]+n,);
T2.ins(T2.rt[fa[lca][]],,*n,d[s]-*d[lca]+n,-);
if (d[s]-d[lca]==w[lca]) ans[lca]--;
}
dfs2();
rep(i,,n) printf("%d ",ans[i]); puts("");
return ;
}

[NOIP2016]天天爱跑步(树上差分+线段树合并)的更多相关文章

  1. 【bzoj4719】[Noip2016]天天爱跑步 权值线段树合并

    题目描述 给出一棵n个点的树,以及m次操作,每次操作从起点向终点以每秒一条边的速度移动(初始时刻为0),最后对于每个点询问有多少次操作在经过该点的时刻为某值. 输入 第一行有两个整数N和M .其中N代 ...

  2. [Luogu5327][ZJOI2019]语言(树上差分+线段树合并)

    首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路 ...

  3. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  4. LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)

    题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的 ...

  5. 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)

    传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...

  6. bzoj 3307: 雨天的尾巴【树剖lca+树上差分+线段树合并】

    这居然是我第一次写线段树合并--所以我居然在合并的时候加点结果WAWAWAMLEMLEMLE--!ro的时候居然直接指到la就行-- 树上差分,每个点建一棵动态开点线段树,然后统计答案的时候合并即可 ...

  7. BZOJ 3307 雨天的尾巴 (树上差分+线段树合并)

    题目大意:给你一棵树,树上一共n个节点,共m次操作,每次操作给一条链上的所有节点分配一个权值,求所有节点被分配到所有的权值里,出现次数最多的权值是多少,如果出现次数相同就输出最小的. (我辣鸡bzoj ...

  8. Luogu5327 ZJOI2019语言(树上差分+线段树合并)

    暴力树剖做法显然,即使做到两个log也不那么优美. 考虑避免树剖做到一个log.那么容易想到树上差分,也即要对每个点统计所有经过他的路径产生的总贡献(显然就是所有这些路径端点所构成的斯坦纳树大小),并 ...

  9. P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并 (树上差分+线段树合并)

    显然的树上差分问题,最后要我们求每个点数量最多的物品,考虑对每个点建议线段树,查询子树时将线段树合并可以得到答案. 用动态开点的方式建立线段树,注意离散化. 1 #include<bits/st ...

随机推荐

  1. 【51NOD-0】1089 最长回文子串 V2(Manacher算法)

    [算法]回文树 #include<cstdio> #include<algorithm> #include<cstring> using namespace std ...

  2. java map 转 json 自编封装

    1.自编封装代码: import com.alibaba.fastjson.JSON; import java.util.*; public class jsonConversion { privat ...

  3. aptitude约等于apt-get的工具

    如题,与之不同的是其会将依赖的程序也给删除. https://baike.baidu.com/item/aptitude/6849487?fr=aladdin 以下是一些常用 aptitude命令,仅 ...

  4. 细数雷军系成员,27家公司3家IPO

    自 2004 年至今,作为天使投资人和顺为基金创始合伙人,雷军共投了移动互联网.电子商务.互联网社区等领域内的 27 家创业公司,其中欢聚时代.猎豹移动.迅雷三家公司成功上市.小米科技虽然还未 IPO ...

  5. C#中执行批处理文件(.bat),执行数据库相关操作

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. 如何在本地用vs调试微信接口

    这段时间在研究微信,看了网上很多都是把项目发布之后在服务器上调试,可以我想可以直接在vs上面设置断点调试 刚开始才用 http://www.cnblogs.com/hanzhaoxin/p/45186 ...

  7. zookeeper安装和搭建集群方式(window)

    1.   概述 ZooKeeper是Hadoop的正式子项目,它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护.名字服务.分布式同步.组服务等.ZooKeeper的目标就是封装好复杂 ...

  8. CentOS 7下安装php-redis扩展及简单使用

    前言: 在本篇文章中,我将给大家介绍如何在CentOS7上安装PHP-Redis扩展以及一些简单的实用,关于如何在Centos上安装redis的,可以参考 Redis在CentOS 7上的安装部署   ...

  9. CocoaPods第三方类库依赖管理

    安装cocoapods   1.移除ruby的源地址 gem sources --remove https://rubygems.org/   2.添加ruby的源地址 gem sources -a ...

  10. LoadRunner中的C Vuser函数

    LoadRunner中的C Vuser函数     事务函数: lr_end_sub_transaction 标记子事务的结束以便进行性能分析. lr_end_transaction 标记事务的结束. ...