题目传送门(内部题138)


输入格式

  输入数据第一行为两个整数$d,n$。
  第二行$d$个非负整数$a_1,a_2,...,a_d$。    
  接下来$n$行,每行$d$个整数,表示一个坏点的坐标。数据保证坏点在网络范围内,且不会是点$A$或点$B$。


输出格式

  一个整数,为从点$A$移动到点$B$的不同的路径数对$10^9+7$取模后的值。


样例

样例输入:

2 1
2 1
1 0

样例输出:

1


数据范围与提示


题解

先来考虑$n=0$的情况,利用组合数学,答案就是:

$$ans=(\sum\limits_{i=1}^d a_i)!\times \prod\limits_{i=1}^d(a_i!)^{-1}$$。

再来考虑$n\neq 0$的情况。

考虑容斥。

不妨设$dp[i]$表示从$A$点出发到达$i$点的合法路径条数,$g[i][j]$表示从$i$到$j$的任意路径条数,则有:

$$dp[i]=g[A][i]-\sum\limits_{j=1}^{i-1}dp[j]\times g[j][i]$$

时间复杂度:$\Theta(n^2d)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
struct rec{int d[101];}a[502];
int d,n;
int fac[10000001],inv[10000001];
long long dp[502];
long long qpow(long long x,long long y)
{
long long res=1;
while(y)
{
if(y&1)res=res*x%mod;
x=x*x%mod;y>>=1;
}
return res;
}
void pre_work()
{
fac[0]=1;
for(int i=1;i<=10000000;i++)fac[i]=1LL*fac[i-1]*i%mod;
inv[10000000]=qpow(fac[10000000],mod-2);
for(int i=10000000;i;i--)inv[i-1]=1LL*inv[i]*i%mod;
}
bool cmp(rec a,rec b){for(int i=1;i<=d;i++)if(a.d[i]!=b.d[i])return a.d[i]<b.d[i];}
long long ask(rec a,rec b)
{
int now=0;
long long res=1;
for(int i=1;i<=d;i++)
{
if(b.d[i]<a.d[i])return 0;
now+=b.d[i]-a.d[i];
res=res*inv[b.d[i]-a.d[i]]%mod;
}
return res*fac[now]%mod;
}
int main()
{
pre_work();scanf("%d%d",&d,&n);
for(int i=1;i<=n+1;i++)
for(int j=1;j<=d;j++)
scanf("%d",&a[i].d[j]);
sort(a+1,a+n+2,cmp);
for(int i=1;i<=n+1;i++)
{
dp[i]=ask(a[0],a[i]);
for(int j=1;j<i;j++)dp[i]=(dp[i]-ask(a[j],a[i])*dp[j]%mod+mod)%mod;
}
printf("%lld",dp[n+1]);
return 0;
}

rp++

[CSP-S模拟测试]:多维网格(组合数学+容斥)的更多相关文章

  1. 【GDOI2016模拟3.16】幂(容斥 + 模型复杂转化)

    [GDOI2016模拟3.16]幂 \(X\in[1,A],Y\in[1,B]\),问:\(x^y\)的不用取值个数. \(A,B\)都是\(10^9\)级别. 然后我们开搞. 首先,假设一个合法的\ ...

  2. HDU 6397 Character Encoding (组合数学 + 容斥)

    题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...

  3. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

  4. [BZOJ2839]:集合计数(组合数学+容斥)

    题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...

  5. [CQOI2014]数三角形 题解(组合数学+容斥)

    [CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...

  6. P6076-[JSOI2015]染色问题【组合数学,容斥】

    正题 题目链接:https://www.luogu.com.cn/problem/P6076 题目大意 给出\(n*m\)的网格,\(c\)种颜色涂色要求 每个格子可以染色也可以不染 每一行每一列至少 ...

  7. [NOIP模拟测试7]visit 题解(组合数学+CRT+Lucas定理)

    Orz 因为有T的限制,所以不难搞出来一个$O(T^3)$的暴力dp 但我没试 据说有30分? 正解的话显然是组合数学啦 首先$n,m$可能为负,但这并没有影响, 我们可以都把它搞成正的 即都看作向右 ...

  8. [CSP-S模拟测试]:建设城市(city)(组合数学+容斥)

    题目传送门(内部题8) 输入格式 一行三个整数$n,m,k$. 输出格式 一行一个整数表示答案.对$998244353$取模. 样例 样例输入 3 7 3 样例输出 数据范围与提示 对于10%的数据, ...

  9. 【10.3校内测试【国庆七天乐!】】【DP+组合数学/容斥】【spfa多起点多终点+二进制分类】

    最开始想的暴力DP是把天数作为一个维度所以怎么都没有办法优化,矩阵快速幂也是$O(n^3)$会爆炸. 但是没有想到另一个转移方程:定义$f[i][j]$表示每天都有值的$i$天,共消费出总值$j$的方 ...

随机推荐

  1. Postman之简单使用

    前提:已获得接口文档 / 抓包数据 1.启动Postman 直接在这个页面输入数据(不用管其他的地方!!!) 2.按照接口文档填入 注意蓝色框中的数据 请求方式:POST(几乎都是使用POST/GET ...

  2. webAapi

    学习目标: 掌握API和Web API的概念 掌握常见浏览器提供的API的调用方式 能通过Web API开发常见的页面交互功能 能够利用搜索引擎解决问题 typora-copy-images-to: ...

  3. 19 Python之面向对象(成员)

    1. 成员 在类中你能写的所有内容都是类的成员 2. 变量 1. 实例变量: 由对象去访问的变量. class Person: def __init__(self, name, id, gender, ...

  4. Vue+axios 拦截,超时登录问题

    axios.interceptors.request.use(config => config, error => Promise.reject(error)); axios.interc ...

  5. Halide安装指南release版本

    Halide安装指南 本版本针对Halide release版本 by jourluohua 使用的是Ubuntu 16.04 64位系统默认Gcc 4.6 由于halide中需要C++ 11中的特性 ...

  6. 关于mail mailx 以及sendmail 的理解

    最近在弄邮件告警相关的东西,接触到了mail这一块,但是发送邮件的时间看到网上的用法 yum install mailx sednmail -y 这一块很迷糊 所以决定自己研究下 首先套用官话解释: ...

  7. dede_arctype|栏目表

    dede_arctype|栏目表: 字段 类型 整理 属性 Null 默认 额外 id smallint(5) UNSIGNED 是 NULL 栏目ID reid smallint(5) UNSIGN ...

  8. xml_dom解析

    DOM解析(一) 采用dom解析,会将xml文档全部载入到内存当中,然后将xml文档中的所有内容转换为tree上的节点(对象). 优点: 可以随机解析 可以修改文件 可以创建xml文件 缺点: 适合解 ...

  9. 谷歌对Intel 10nm进度不满

    Intel 在 10nm 处理器上的节奏可谓是“龟速”,一拖三年,且目前大规模发货的 10nm Ice Lake 处理器仅仅是移动平台低电压,桌面要到明年. 表面波澜不惊,实际上却暗流涌动. 首先是 ...

  10. python动态添加属性

    class A: def __init__(self, info ={}): self.info = info def __getattr__(self, item): return self.inf ...