RPN
训练:
特征图是51x39x256,对该图像的每点考虑9个窗口:三种候选面积(128,256,512) x 三种尺度(1:1,1:2,2:1)。这些候选窗口称为anchors。如下图:
如果图片尺寸w*h,特征图的尺寸是w/r ×h/r(由pool5层得到的尺寸,计算后得到这个r)。r是下采样率(subsampling ratio)。如果在卷积图空间位置定义anchor,则最终的图片会是由r像素划分的anchor集。在VGG中,r=16。也就是在特征图中得到的anchor尺寸乘以这个r就是在原图中的尺寸了。
然后计算每个点(共21x39个点,每个点256个通道,即256维)的9个anchor值(在原图上的),给每个anchor分配一个二进制标签(前景,背景):
- 跟真值框的交并比最高的,标为1;
- 跟真值框的交并比大于0.7的,标为1;
然后随机采样anchors来生成batch_size=256的mini batch,尽可能保持foreground 与 background的比例平衡。RPN 对 mini-batch 内的所有 anchors 采用 binary cross entropy 来计算分类 loss。然后,只对 mini-batch 内标记为 foreground 的 anchros 计算回归 loss。为了计算回归的目标targets,根据 foreground anchor 和其最接近的 groundtruth object,计算将 anchor 变换到 object groundtruth 的偏移值correct
对于分类层,输出每个anchor属于前景和背景的概率值;
对于回归层,也可以叫边界框调整层,每个anchor输出4个预测值:
,根据这个偏移量来用anchor得到最终的proposal。
因为anchors是有重叠的overlap,同一个目标(这里不管类别,指所有类别)也有多个互相重叠的anchors。
为了解决重叠 proposals 问题,采用 NMS 算法处理,丢弃与一个score 更高的 proposal 间 IoU 大于预设阈值的 proposals。如果 IoU 值过大,可能会导致 objects 出现很多 proposals. IoU 典型值为 0.6。
NMS 处理后,根据 sore 对 topN 个 proposals 排序. 在 Faster R-CNN 论文中 N=2000,其值也可以小一点,如 50,仍然能的高好的结果.
最后通过NMS,RPN产生的输出是一系列的ROI_data,通过与ROI的相对映射关系,将conv5_3的特征存入到ROI_data中,供后面的分类网使用。
补充:
RPN 可以独立使用,不用 2-stage 模型.
当处理的问题是,单个 object 类时,objectness 概率即可作为最终的类别概率. 此时,“foreground” = “single class”,“background”=“not single class”.
可以应用于人脸检测(face detection),文字检测(text detection),等.
仅单独采用 RPN 的优点在于,训练和测试速度较快. 由于 RPN 是仅有卷积层的简单网络,其预测效率比采用分类 base 网络的效率高.
所以,综合来讲,整个RPN的作用就是替代了以前的selective-search方法,因为网络内的运算都是可GPU加速的,所以一下子提升了ROI生成的速度。可以将RPN理解为一个预测前景背景,并将前景框定的一个网络,并进行单独的训练,实际上论文里面就有一个分阶段训练的训练策略,实际上就是这个原因。
RPN的更多相关文章
- r-cnn学习(六):RPN及AnchorTargetLayer学习
RPN网络是faster与fast的主要区别,输入特征图,输出region proposals以及相应的分数. # ------------------------------------------ ...
- 7.25 RPN转换
思想: 目的:将中缀表达式(即标准形式的表达式)转换为后缀式. 例子:a+b*c+(d*e+f)*g转换成abc*+de*f+g*+ 转换原则: 1.当读到一个操作数时,立即将它放到输出中.操作符则不 ...
- leetcode--002 rpn
package leetcode; import java.util.Stack; public class RPN { public static int evalRPN(String[] toke ...
- 逆波兰表达式(RPN)算法简单实现
算法分析: 一.预处理 给定任意四则运算的字符串表达式(中缀表达式),preDeal预先转化为对应的字符串数组,其目的在于将操作数和运算符分离. 例如给定四则运算内的中缀表达式: String inf ...
- Faster R-CNN 的 RPN 是啥子?
 Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region p ...
- 在win7上跑基于任少卿作者代码修改的RPN+BF实验
1.前言 之前在win10上成功的跑起来faster-rcnn的实验,并且跑了一下CaltechPedestrian的数据集,但是效果一直不理想,折腾了好久也没弄清楚到底原因出在哪里,直到读了Is F ...
- [转]关于Megatops BinCalc RPN计算器的说明
最近收到几个好心人发来的邮件,指出我的BinCalc存在低级BUG,即1+1算出来不等于2--鉴于存在这种误解的人之多,俺不得不爬出来澄清一下--我的Megatops BinCalc当中的计算器是RP ...
- 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成
一.RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过 ...
- RPN(region proposal network)之理解
在faster-r-cnn 中,因为引入rpn层,使得算法速度变快了不少,其实rpn主要作用预测的是 “相对的平移,缩放尺度”,rpn提取出的proposals通常要和anchor box进行拟合回归 ...
- 对faster rcnn 中rpn层的理解
1.介绍 图为faster rcnn的rpn层,接自conv5-3 图为faster rcnn 论文中关于RPN层的结构示意图 2 关于anchor: 一般是在最末层的 feature map 上再用 ...
随机推荐
- ElasticSearch 7.3.0 查询、修改、删除 文档操作
PUT chuyuan/_doc/ { "name":"xiaolin", , "sex":"F", "lov ...
- zabbix4安装部署
参考: https://www.cnblogs.com/barneywill/p/10380622.html https://www.cnblogs.com/yinzhengjie/p/1037256 ...
- MyBatis批量插入性能及问题
1.mybatis三种批量插入方式对比 2.Mybatis与JDBC批量插入MySQL数据库性能测试及解决方案 3.Mybatis批量插入引发的血案 4.Oracle批量插入数据SQL语句太长出错
- [转帖]java必备的开发知识和技能
java必备的开发知识和技能 https://blog.csdn.net/qq_34405062/article/details/89389646 学习一下java 其实上学那会儿学的 早就过时加落伍 ...
- CentOS7之SVN服务配置
操作系统:CentOS Linux release 7.2.1511 (Core) Subversion软件版本:subversion-1.7.14-10.el7.x86_64 1.首先检查sv ...
- yarn以及mapreduce部署
修改hadoop的配置文件yarn-site.xml: 复制该配置文件到其他服务器 scp yarn-site.xml ubuntu-01:$PWD yarn启动命令: start-yarn.sh M ...
- 如何根据对象的属性,对集合(list / set)中的对象进行排序
一:针对list 通过java.util.Collections的sort方法,有2个参数,第一个参数是list对象,第二个参数是new Comparator<对象类>(){}方法,这 ...
- 初步学习jquery学习笔记(三)
jQuery学习笔记三 jquery停止动画 stop函数的初步功能 <!DOCTYPE html> <html lang="en"> <head&g ...
- 删除项目中所有的__pycache__ 文件
关于 pycache 当第一次运行 python 脚本时,解释器会将 *.py 脚本进行编译并保存到 __pycache__ 目录 下次执行脚本时,若解释器发现你的 *.py 脚本没有变更,便会跳过编 ...
- WebDriverWait类以及类常用的方法
WebDriverWait类提供了显式等待和隐式等待,显式等待的等待时间是固定的,固定了10s就必须等待10s,隐式等待的等待时间是个范围,例如最大10s,那么如果在3s的时候程序达到预期的结果,那么 ...