CodeForces - 1038D (线性DP)
题目:https://codeforces.com/problemset/problem/1038/D
题意:给你n个数字,每个数字可以吃左右两边的数,然后吃完后自己变成 a[i]-a[i+1]或者a[i]-a[i-1],然后问你最后只剩一个数的时候最大可能的值是多少
思路:我们首先想是由哪一个数会留到最后,那他肯定会吃掉左边的数和右边的数,而如果要使当前数字尽量大,那么就要使左右两边的数字尽量小,我们要确定左边右边的数字尽量小的话,因为有负数的关系,我们每一步都要记录当前格子从左到右的最大值和最小值,然后同理再记录一个从右到左的,然后枚举哪一个留到最后,减去前缀最小和后缀最小即可
#include<bits/stdc++.h>
#define maxn 500005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,a[maxn];
ll dp1[maxn][];
ll dp2[maxn][];
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
}
int q;
dp1[n][]=a[n];dp1[n][]=a[n];
dp2[][]=a[];dp2[][]=a[];
for(int i=n-;i>=;i--){
dp1[i][]=max(max(a[i]-dp1[i+][],a[i]+dp1[i+][]),dp1[i+][]-a[i]);
dp1[i][]=min(min(a[i]-dp1[i+][],a[i]+dp1[i+][]),dp1[i+][]-a[i]);
}
for(int i=;i<=n-;i++){
dp2[i][]=max(max(a[i]-dp2[i-][],a[i]+dp2[i-][]),dp2[i-][]-a[i]);
dp2[i][]=min(min(a[i]-dp2[i-][],a[i]+dp2[i-][]),dp2[i-][]-a[i]);
}
ll mx=a[]-dp1[][];
for(int i=;i<=n;i++){
mx=max(mx,a[i]-dp1[i+][]-dp2[i-][]);
}
cout<<mx;
}
/*
5
-14 -2 0 -19 -12
47
*/
CodeForces - 1038D (线性DP)的更多相关文章
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- CodeForces - 1051D (线性DP)
题目:https://codeforces.com/problemset/problem/1051/D 题意:一个2行n列的矩形,上面有黑白块,然后问你怎么布置才能有k个连通块,问有多少种方案数 思路 ...
- [CodeForces - 1272D] Remove One Element 【线性dp】
[CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...
- [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题
题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- zookeeper centos分布式安装使用
1. 请先安装jdk和下载zookeeper.ssh免密登录请自行配置.大家可以到官网下载或我的网盘. 网盘地址: 共3台机器c0,c1,c2 192.168.132.148 c0192.168.13 ...
- CentOS7配置Tomcat8开机自动启动
1.创建文件 # vi /etc/systemd/system/tomcat.service [Unit] Description=Tomcat8540 After=syslog.target net ...
- PHP安装-centos7
下载地址:https://www.php.net/downloads.php 1.wget下载php源码至/usr/local/src 下 wget https://www.php.net/distr ...
- Bootstrap 学习笔记4 巨幕页头略缩图警告框
- 学习:STL----优先队列
优先队列是队列的高级版,最大的特点是可以内部实现排序 优先队列的定义 优先队列内部使用堆排序,从而实现队列内一直保持着某种顺序规律(比如递增,递减等) 在使用优先队列时,首先要引入头文件:#inclu ...
- 进程池Pool的简单使用,同步异步的区别
#进程池 """ 当需要创建子进程数量不多的时候,可以直接利用multiprocessing 中的Process动态生成多个进程,但是如果上百甚至上千个任务, " ...
- php和java的优势
现在市场上的电子商务软件基本上可归结为两大阵营,即PHP阵营和Java阵营.但对接触电子商务不久的用户来说,看到的往往只是它们的表相,只是明显的价格差异,却很难看出它们之间的实际差异.下面我们就为大家 ...
- Swipe-移动端触摸滑动插件swipe.js
原文链接:http://caibaojian.com/swipe.html 插件特色 viaswipe.JS是一个比较有名的触摸滑动插件,它能够处理内容滑动,支持自定义选项,你可以让它自动滚动,控制滚 ...
- Oracle-常见的错误
1.见下面的例子 create or replace procedure p_qr_stu_cid(s_id in number, c_id out number) as begin select t ...
- 常用jQuery技巧总结
1.关于页面元素的引用 通过jquery的$()引用元素包括通过id.class.元素名以及元素的层级关系及dom或者xpath条件等方法,且返回的对象为jquery对象(集合对象),不能直接调用do ...