https://atcoder.jp/contests/agc030/tasks/agc030_f

题解

我们先把这个排列从\(1 \sim 2n\)表达出来,然后题面中的每一对数我们可以用一条线把他们连起来,那么在序列中表达出的值是这条线的左端点。

如果一开始每个数都没有限制的话,我们则需要求有哪些数会成为左端点,这个其实就是卡特兰数,求答案的话还需要求一个阶乘。

现在有一些位置有了限制,我们就把有限制的位置成为特殊位置。

还是从\(1\sim 2n\)这个序列上考虑,因为我们的贡献是在左端点产生,所以我们设\(dp[i][j][k]\)表示做到\(i\),有\(j\)个普通点没有被匹配,有\(k\)个特殊点没有被匹配。

普通点可以任意匹配,特殊点只能匹配普通点。

如果普通点匹配了特殊点,那么它的位置已经确定了,所以最后我们要乘上普通配普通的对数的阶乘。

代码

#include<bits/stdc++.h>
#define N 602
using namespace std;
typedef long long ll;
int n,now,a[N],sm;
int tag[N];
ll jie[N],dp[2][302][302];
const int mod=1e9+7;
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
int main(){
n=rd();
sm=n*2;
int cnt=0;
for(int i=1;i<=sm;++i){
a[i]=rd();
if(a[i]!=-1)tag[a[i]]=1;
if(i%2==0&&a[i]!=-1&&a[i-1]!=-1){
tag[a[i]]=-1;
tag[a[i-1]]=-1;
}
if(i%2==0&&a[i]==-1&&a[i-1]==-1)cnt++;
}
jie[0]=1;
for(int i=1;i<=sm;++i)jie[i]=jie[i-1]*i%mod;
dp[1][0][0]=1;
int now=1,pre=0;
for(int i=sm;i>=1;--i)if(tag[i]!=-1){
swap(now,pre);
memset(dp[now],0,sizeof(dp[now]));
for(int j=0;j<=n;++j)
for(int k=0;j+k<=n;++k)if(dp[pre][j][k]){
if(tag[i]){
MOD(dp[now][j][k+1]+=dp[pre][j][k]);
if(j)MOD(dp[now][j-1][k]+=dp[pre][j][k]);
}
else{
MOD(dp[now][j+1][k]+=dp[pre][j][k]);
if(j)MOD(dp[now][j-1][k]+=dp[pre][j][k]);
if(k)MOD(dp[now][j][k-1]+=dp[pre][j][k]*k%mod);
}
}
}
printf("%lld",dp[now][0][0]*jie[cnt]%mod);
return 0;
}

AGC030F - Permutation and Minimum的更多相关文章

  1. 【agc030f】Permutation and Minimum(动态规划)

    [agc030f]Permutation and Minimum(动态规划) 题面 atcoder 给定一个长度为\(2n\)的残缺的排列\(A\),定义\(b_i=min\{A_{2i-1},A_{ ...

  2. 【AGC030F】Permutation and Minimum DP

    题目大意 有一个长度为序列 \(a\),其中某些位置的值是 \(-1\). 你要把 \(a\) 补成一个排列. 定义 \(b_i=\min(a_{2i-1},a_{2i})\),求有多少种可能的 \( ...

  3. 【AGC030F】Permutation and Minimum(DP)

    题目链接 题解 首先可以想到分组后,去掉两边都填了数的组. 然后就会剩下\((-1,-1)\)和\((-1,x)\)或\((x,-1)\)这两种情况 因为是最小值序列的情况数,我们可以考虑从大到小填数 ...

  4. AtCoder Grand Contest 030 (AGC030) F - Permutation and Minimum 动态规划

    原文链接www.cnblogs.com/zhouzhendong/p/AGC030F.html 草率题解 对于每两个相邻位置,把他们拿出来. 如果这两个相邻位置都有确定的值,那么不管他. 然后把所有的 ...

  5. Atcoder Grand Contest 030 F - Permutation and Minimum(DP)

    洛谷题面传送门 & Atcoder 题面传送门 12 天以前做的题了,到现在才补/yun 做了一晚上+一早上终于 AC 了,写篇题解纪念一下 首先考虑如果全是 \(-1\)​ 怎么处理.由于我 ...

  6. AtCoder Grand Contest 030题解

    第一次套刷AtCoder 体验良好 传送门 Poisonous Cookies cout<<b+min(c,a+b+); Tree Burning 难度跨度有点大啊 可以证明当第一次转向之 ...

  7. AGC030 简要题解

    A - Poisonous Cookies 题意 有\(A\)个能解毒的普通饼干,\(B\)个能解毒的美味饼干,\(C\)个有毒的美味饼干,求最多能吃多少个美味饼干,每次吃完有毒的饼干后要解毒后才能继 ...

  8. 【AtCoder】AGC030

    A - Poisonous Cookies 有毒还吃,有毒吧 #include <bits/stdc++.h> #define fi first #define se second #de ...

  9. [LeetCode] Minimum Window Substring 最小窗口子串

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

随机推荐

  1. C盘无损扩容(傻逼拯救者128G固态分两个盘)

    下载DiskGenius.exe 进行拆分分区(我从d盘拆分出20G给c盘) 然后右键此电脑,管理->磁盘管理 选中刚分出来的20G空间指向到c盘

  2. “EndExecuteNonQuery”方法没有任何重载采用“0”个参数

    EndExecuteNonQuery需要参数IAsyncResult asyncResult myCmd.ExecuteNonQuery();//执行 ExecuteNonQuery 返回受影响行数

  3. 刘铁猛-深入浅出WPF-系列资源汇总

    首先奉上原作者刘铁猛博客地址:http://www.cnblogs.com/prism/ 作者讲的很不错,没有之一,另外作者出了一本书,希望大家支持. 送上全套高清晰视频教程(我注册了3个51cto的 ...

  4. JProfiler监控

    原文: https://blog.csdn.net/jijilan/article/details/83022715

  5. You-Get,多网站视频下载工具,非常方便

    You-Get是一个非常优秀的网站视频下载工具.使用You-Get可以很轻松的下载到网络上的视频.图片及音乐. 按Win+R键打开运行,输入cmd,再输入命令 pip install you-get, ...

  6. I-最短的名字

    在一个奇怪的村子中,很多人的名字都很长,比如aaaaa, bbb and abababab. 名字这么长,叫全名显然起来很不方便.所以村民之间一般只叫名字的前缀.比如叫’aaaaa’的时候可以只叫’a ...

  7. js模拟自动化测试 -- 多用户登录

    1.核心登录提交方法 /** * 动态表单提交方法 * @param url{string}: 提交地址 * @param params{object}: 要提交的表单数据 **/ function ...

  8. read、readline 和 readlines 的区别?

    假设a.txt的内容如下所示: 1 Hello 2 Welcome 3 What is the fuck... read:读取整个文件. read([size])方法从文件当前位置起读取size个字节 ...

  9. input 限制 中文输入

    ime-mode:disabled是什么? 解决: 1.     ime-mode版本:IE5+专有属性 继承性:无    语法:     ime-mode : auto | active | ina ...

  10. python2和3的一些区别,编码方式

    python2与python3的区别: #python2 print() print'abc' #range() xrange()生成器 #raw_input()#python3 #print('ab ...