W同学的新画板 QDUOJ 线段树 区间颜色段数

原题链接

题意

W同学在每天的刻苦学习完成功课之余,都会去找一些有趣的事情来放松自己;恰巧今天他收到了朋友送给他的一套画板,于是他立刻拆开了包装,拿出其中的画板和一些画笔,开心地画了起来;这时W同学注意到了闲暇的你正好待在一旁,于是他灵机一动,打算考验一下你的眼力,具体过程是这样的:

W同学收到的画板可看作一个长条状的木板,画板从左端到右端可划分为等长的连续的n段(自左至右依次编号为第1段,第2段,第3段,...,第n段,如下图所示),开始时每一段都有一个初始的颜色,之后W同学会进行一些操作,每次操作中他都会选一段区间[L,R],然后用画笔把画板的第L段~第R段这一块连续的部分染为颜色C(被染色的某段先前已存在的颜色会被新颜色覆盖),而且每当进行一些染色操作后,W同学都有可能会让你立即答出他给你的某段区间[L,R]中共有多少个颜色段,以此考察你的眼力,聪明的你敢不敢接受W同学的考验?

解题思路

使用线段树来进行处理这个题是大体的思路,原因在于题目要求一段区间内的颜色段数。要注意的是,这里是求取一段区间内的颜色的段数,不是有多少种颜色,比如 1 2 2 1 1 这个画板就有3段颜色,和自己以前做的求取区间内的颜色的种类数不同,这个题目还没想过,确实很新,参考的CH大佬的代码,下方链接。

参考大佬的思路

代码实现(带注释)

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=5e5+7;
struct Node{
int l, r;
int sum, lazy;//sum记录这里有几段颜色段,lazy就是线段树常用的标记
int le, re; //这里是来记录这段区间的左右端点处的颜色种类
}node[maxn<<2];
int col[maxn]; //存储初始的颜色种类
void up(int rt)
{
node[rt].sum=node[rt<<1].sum+node[rt<<1|1].sum; //左右区间段数相加
if(node[rt<<1].re==node[rt<<1|1].le)//这里需要注意左右段的交界处,如果相等的话,总的段数是要进行减一的
node[rt].sum--; //这里想一想是不是
node[rt].le=node[rt<<1].le;
node[rt].re=node[rt<<1|1].re;
}
void build(int rt, int l, int r)
{
node[rt].l=l;
node[rt].r=r;
node[rt].lazy=-1;
if(l==r)
{
node[rt].sum=1;
node[rt].le=node[rt].re=col[l];
return ;
}
int mid=(l+r)>>1;
build(rt<<1, l, mid);
build(rt<<1|1, mid+1, r);
up(rt);
}
void down(int rt)
{
node[rt<<1].lazy=node[rt<<1|1].lazy=node[rt].lazy;
node[rt<<1].sum=node[rt<<1|1].sum=1; //左右的段数都归为1
node[rt<<1].le=node[rt<<1].re=node[rt].lazy;
node[rt<<1|1].le=node[rt<<1|1].re=node[rt].lazy; node[rt].lazy=-1;
}
void update(int rt, int l, int r, int v)
{
if(l <= node[rt].l && node[rt].r <= r)
{
node[rt].lazy = node[rt].le = node[rt].re = v;
node[rt].sum=1;
return ;
}
int mid=(node[rt].l+node[rt].r)>>1;
if(node[rt].lazy!=-1) //这里有点不一样
down(rt);
if(l<=mid) update(rt<<1, l, r, v);
if(r>mid) update(rt<<1|1, l, r, v);
up(rt);
}
int query(int rt, int l, int r)
{
if(l <= node[rt].l && node[rt].r <=r)
{
return node[rt].sum;
}
if(node[rt].lazy!=-1)
down(rt);
int ans=0, mid=(node[rt].l + node[rt].r)>>1;
//这里因为交界处的特殊性,所以询问的方式不再是if(l<=mid)……然后if(r>mid)……
//这里需要判断三种情况
//1.全部在左区间 2.全部在右区间 3.左右区间都有
//这里1,2种情况比较好处理,就是第3种情况需要特殊一些
//第三种情况也是分开两半来计算的,但是需要判断中间交汇处是不是需要进行减一
if(r<=mid) return query(rt<<1, l, r); //第一种情况
else if(l>mid) return query(rt<<1|1, l, r); //第二种情况
else ans=query(rt<<1, l, r)+query(rt<<1|1, l, r); //第三种情况,也是比较特殊的一种情况
if(node[rt<<1].re == node[rt<<1|1].le)//这是关键,判断中间交汇处的颜色是不是相等,相等需要减一
ans--;
return ans;
}
int main()
{
int n, q, op, a, b, c;
cin>>n>>q;
for(int i=1; i<=n; i++)
cin>>col[i];
build(1, 1, n);
for(int i=1; i<=q; i++)
{
cin>>op;
if(op==1)
{
cin>>a>>b>>c;
update(1, a, b, c);
}
else if(op==2)
{
cin>>a>>b;
cout<<query(1, a, b)<<endl;
}
}
return 0;
}

W同学的新画板 QDUOJ 线段树 区间颜色段数的更多相关文章

  1. SPOJ D-query && HDU 3333 Turing Tree (线段树 && 区间不相同数个数or和 && 离线处理)

    题意 : 给出一段n个数的序列,接下来给出m个询问,询问的内容SPOJ是(L, R)这个区间内不同的数的个数,HDU是不同数的和 分析 : 一个经典的问题,思路是将所有问询区间存起来,然后按右端点排序 ...

  2. HYSBZ - 2243 树链剖分 + 线段树 处理树上颜色段数

    用线段树处理颜色段数 记录区间内的颜色段数,区间右端点的颜色,区间右端点的颜色. int tr[maxn<<2], lc[maxn<<2], rc[maxn<<2] ...

  3. 【APIO2018】新家(线段树)

    [APIO2018]新家(线段树) 题面 UOJ 洛谷 BZOJ 题解 论比赛时想不到二分的危害,就只能Cu滚粗 既然不要在线,那么考虑离线做法. 既然时间是区间,那么显然按照时间顺序处理答案. 显然 ...

  4. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  5. POJ 3667 Hotel(线段树 区间合并)

    Hotel 转载自:http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html [题目链接]Hotel [题目类型]线段树 ...

  6. hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新

    #1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...

  7. HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...

  8. I Hate It(hdu1754)(线段树区间最大值)

    I Hate It hdu1754 Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. 线段树(区间合并) POJ 3667 Hotel

    题目传送门 /* 题意:输入 1 a:询问是不是有连续长度为a的空房间,有的话住进最左边 输入 2 a b:将[a,a+b-1]的房间清空 线段树(区间合并):lsum[]统计从左端点起最长连续空房间 ...

随机推荐

  1. Spoj4060 game with probability Problem

    题目链接:Click here Solution: 刚开始还以为博弈论加概率,然而并不是... 设两个状态:\(f(i)\)表示当前剩下\(i\)个石头时,先手的获胜概率,\(g(i)\)为后手的获胜 ...

  2. Mybatis学习笔记之---多表查询(2)

    Mybatis多表查询(2) (一)举例 用户和角色 一个用户可以有多个角色,一个角色可以赋予多个用户 (二)步骤 1.建立两张表:用户表,角色表,让用户表和角色表具有多对多的关系.需要使用中间表,中 ...

  3. 自定义springmvc参数解析器

    实现spring HandlerMethodArgumentResolver接口 通过使用@JsonArg自定义注解来解析json数据(通过fastjson的jsonPath),支持多个参数(@Req ...

  4. 分布式架构基石-TCP通信协议

    为什么会有TCP/IP协议 在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别.就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样 ...

  5. centos-系统删除多余网卡的方法

    一.删除系统中中多余的ifcfg-eth0.bak Centos系统更改网卡或网卡MAC地址后会出现个eth0.bak配置备份文件解决方法:/etc/sysconfig/networking/devi ...

  6. 简单记录一下vue生命周期及 父组件和子组件生命周期钩子执行顺序

    首先,vue生命周期可以用下图来简单理解 当然这也是官方文档的图片,详细的vue周期详解请参考这里 然而当同时存在父子组件的时候生命周期钩子是如何执行的呢? 请看下文: 加载渲染过程父beforeCr ...

  7. php 错误提示开启

    开发环境项目,通常需要错误提示:php.ini文件,设置 display_errors = On 项目上线以后,当然不想把错误提示显示. 一般不直接修改php.ini文件,下面两行代码直接加入报错ph ...

  8. Vue学习(一) :入门案例

    1. 开始前的准备 IDE:VSCode(推荐)或者Sublime Text 前导技术:JavaScript中级 2. 官方提供的product例程 product.html页面代码: <div ...

  9. 详解设备PID和VID

    根据USB规范的规定,所有的USB设备都有供应商ID(VID)和产品识别码(PID),主机通过不同的VID和PID来区别不同的设备. VID和PID都是两个字节长,其中,供应商ID(VID)由供应商向 ...

  10. CentOS7 修改网卡名称为eth0 & 在VMWare中添加多网卡配置

    目录 目录 前言 在CentOS 7 中为什么这样命名网卡 在RHEL7中使用RHEL6的网卡命名规则 在VMWare中为CentOS7添加网卡设备 前言 无论是RHEL 7.还是CentOS 7都使 ...