The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2122    Accepted Submission(s): 884

Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 
Input
The rst line has a number T (T <= 10) , indicating the number of test cases.
For each test case, first line has a single number N (N <= 300), which is the number of points.
For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
 
Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 
Sample Input
2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0
 
Sample Output
Case #1: 1.00 0.00
Case #2: 1.00 1.00
 
 给出几个点的坐标和xy方向上的坐标分速度,问什么时候两点之间距离最大值最小,可以想到两点之间距离要么一直增大,要么先减小后增大,三分就可以啦
#pragma GCC diagnostic error "-std=c++11"
//#include <bits/stdc++.h>
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std; const double eps = 1e-;
const int N= + ;
struct point{
double x, y, vx, vy;
void read(){ cin >> x >> y >> vx >> vy; }
}p[N];
int n; double dist_points(point p1, point p2, double t){
double x = (p1.x + t * p1.vx) - (p2.x + t * p2.vx);
double y = (p1.y + t * p1.vy) - (p2.y + t * p2.vy);
return sqrt(x * x + y * y);
} double cal(double x){
double Max = ;
for(int i = ; i < n; i++)
for(int j = i + ; j < n; j++)
Max = max(Max, dist_points(p[i], p[j], x));
return Max;
} double ternary_search(double L, double R){
if(L > R) swap(L, R);
while(R - L > eps){
double mid1, mid2;
mid1 = (L + R) / ;
mid2 = (mid1 + R) / ;
if(cal(mid1) <= cal(mid2)) R = mid2;
else L = mid1;
}
return (L + R) / ;
}
int main(){ _
int T, Cas = ;
cin >> T;
while(T --){
cin >> n;
for(int i = ; i < n; i++) p[i].read();
double x = ternary_search(, 1e8);
printf("Case #%d: %.2f %.2f\n", ++Cas, x, cal(x));
}
}

HDU-4717 The Moving Points(凸函数求极值)的更多相关文章

  1. HDU 4717 The Moving Points (三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 4717 The Moving Points(三分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 题意:给出n个点的坐标和运动速度(包括方向).求一个时刻t使得该时刻时任意两点距离最大值最小. ...

  3. hdu 4717 The Moving Points(第一个三分题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 [题意]: 给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小 ...

  4. hdu 4717 The Moving Points(三分+计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 说明下为啥满足三分: 设y=f(x) (x>0)表示任意两个点的距离随时间x的增长,距离y ...

  5. hdu 4717 The Moving Points(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 大致题意:给出每一个点的坐标以及每一个点移动的速度和方向. 问在那一时刻点集中最远的距离在全部时刻的最远距 ...

  6. HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  7. HDU 4717 The Moving Points (三分法)

    题意:给n个点的坐标的移动方向及速度,问在之后的时间的所有点的最大距离的最小值是多少. 思路:三分.两点距离是下凹函数,它们的max也是下凹函数.可以三分. #include<iostream& ...

  8. hdu 4717: The Moving Points 【三分】

    题目链接 第一次写三分 三分的基本模板 int SanFen(int l,int r) //找凸点 { ) { //mid为中点,midmid为四等分点 ; ; if( f(mid) > f(m ...

  9. HDOJ 4717 The Moving Points

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. python类装饰器即__call__方法

    上一篇中我对学习过程中的装饰器进行了总结和整理,这一节简单整理下类装饰器 1.类中的__call__方法: 我们在定义好一个类后,实例化出一个对象,如果对这个对象以直接在后边加括号的方式进行调用,程序 ...

  2. redhat6.5 安装oracle11G

    一.安装依赖包 下面是Oracle数据库需要依赖的软件,依次执行下面命令,不存在则安装. yum install binutils yum install elfutils-libelf yum in ...

  3. 客户端框架-MVVM

    MVVM Model-View-ViewModel 如果说MVP是对MVC的进一步改进,那么MVVM则是思想的完全变革.它是将"数据模型数据双向绑定"的思想作为核心,因此在View ...

  4. linux下安装R第三方包forecast

    ERROR: [root@localhost soft]# R CMD INSTALL curl_3.1.tar.gz WARNING: ignoring environment value of R ...

  5. 使用R进行方差分析

    eff=c(58.2,52.6,56.2,41.2,65.3,60.8,49.1,42.8,54.1,50.5,51.6,48.4,60.1,58.3,70.9,73.2,39.2,40.7,75.8 ...

  6. 查看线程的cpu占用率

    1)         top -H -p 进程pid 查看线程的线程ID与CPU占用情况.或者使用 ps -eLo pid,lwp,pcpu | grep 进程pid2)         pstack ...

  7. react属性之exact

    exact是Route下的一个属性,react路由会匹配到所有能匹配到的路由组件,exact能够使得路由的匹配更严格一些. exact的值为bool型,为true时表示严格匹配,为false时为正常匹 ...

  8. 【Spark机器学习速成宝典】模型篇07梯度提升树【Gradient-Boosted Trees】(Python版)

    目录 梯度提升树原理 梯度提升树代码(Spark Python) 梯度提升树原理 待续... 返回目录 梯度提升树代码(Spark Python) 代码里数据:https://pan.baidu.co ...

  9. your current language level is ecmascript 5

    https://stackoverflow.com/questions/32995066/how-can-i-configure-resharpers-language-level-for-ecmas ...

  10. scp 传输命令

    scp -r 文件名 用户名@地址:路径 -r 代表上传文件夹