Yarn 工作机制

1、工作机制详述
(1)MR程序提交到客户端所在的节点。
(2)YarnRunner向ResourceManager申请一个Application。
(3)RM将该应用程序的资源路径返回给YarnRunner。
(4)该程序将运行所需资源提交到HDFS上。
(5)程序资源提交完毕后,申请运行mrAppMaster。
(6)RM将用户的请求初始化成一个Task。
(7)其中一个NodeManager领取到Task任务。
(8)该NodeManager创建容器Container,并产生MRAppmaster。
(9)Container从HDFS上拷贝资源到本地。
(10)MRAppmaster向RM 申请运行MapTask资源。
(11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
(13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
(14)ReduceTask向MapTask获取相应分区的数据。
(15)程序运行完毕后,MR会向RM申请注销自己。
2、作业提交详述
(1)作业提交
第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
第2步:Client向RM申请一个作业id。
第3步:RM给Client返回该job资源的提交路径和作业id。
第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
第5步:Client提交完资源后,向RM申请运行MrAppMaster。
(2)作业初始化
第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
第7步:某一个空闲的NM领取到该Job。
第8步:该NM创建Container,并产生MRAppmaster。
第9步:下载Client提交的资源到本地。
(3)任务分配
第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(4)任务运行
第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第14步:ReduceTask向MapTask获取相应分区的数据。
第15步:程序运行完毕后,MR会向RM申请注销自己。
(5)进度和状态更新
YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外, 客户端每5分钟都会通过调用waitForCompletion()来检查作业是否完成。
时间间隔可以通过mapreduce.client.completion.pollinterval来设置。
作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。
Yarn 工作机制的更多相关文章
- Yarn工作机制
概述 (0)Mr 程序提交到客户端所在的节点. (1)Yarnrunner 向 Resourcemanager 申请一个 Application. (2)rm将该应用程序的资源路径和Applicati ...
- MapRdeuce&Yarn的工作机制(YarnChild是什么)
MapRdeuce&Yarn的工作机制 一幅图解决你所有的困惑 那天在集群中跑一个MapReduce的程序时,在机器上jps了一下发现了每台机器中有好多个YarnChild.困惑什么时Yarn ...
- Spark工作机制简述
Spark工作机制 主要模块 调度与任务分配 I/O模块 通信控制模块 容错模块 Shuffle模块 调度层次 应用 作业 Stage Task 调度算法 FIFO FAIR(公平调度) Spark应 ...
- MapReduce工作机制——Word Count实例(一)
MapReduce工作机制--Word Count实例(一) MapReduce的思想是分布式计算,也就是分而治之,并行计算提高速度. 编程思想 首先,要将数据抽象为键值对的形式,map函数输入键值对 ...
- Hadoop的namenode的管理机制,工作机制和datanode的工作原理
HDFS前言: 1) 设计思想 分而治之:将大文件.大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析: 2)在大数据系统中作用: 为各类分布式运算框架(如:mapr ...
- Hadoop yarn工作流程详解
yarn是什么?1.它是一个资源调度及提供作业运行的系统环境平台 资源:cpu.mem等 作业:map task.reduce Task yarn产生背景?它是从hadoop2.x版本才引入1.had ...
- MapReduce的工作机制
<Hadoop权威指南>中的MapReduce工作机制和Shuffle: 框架 Hadoop2.x引入了一种新的执行机制MapRedcue 2.这种新的机制建议在Yarn的系统上,目前用于 ...
- [hadoop读书笔记] 第五章 MapReduce工作机制
P205 MapReduce的两种运行机制 第一种:经典的MR运行机制 - MR 1 可以通过一个简单的方法调用来运行MR作业:Job对象上的submit().也可以调用waitForCompleti ...
- MapReduce1 工作机制
本文转自:Hadoop MapReduce 工作机制 工作流程 作业配置 作业提交 作业初始化 作业分配 作业执行 进度和状态更新 作业完成 错误处理 作业调度 shule(mapreduce核心)和 ...
随机推荐
- mybatis返回自增主键问题踩坑
1 <insert id="insert" keyProperty="id" useGeneratedKeys="true" par ...
- 过采样算法之SMOTE
SMOTE(Synthetic Minority Oversampling Technique),合成少数类过采样技术.它是基于随机过采样算法的一种改进方案,由于随机过采样采取简单复制样本的策略来增加 ...
- JavaSE---泛型系统学习
1.概述 1.1.泛型: 允许在 定义 类.接口.方法时 使用 类型形参,这个类型形参 将在声明变量.创建对象.调用方法时 动态地指定: 1.2.jdk5后,引入了 参数化类型(允许程 ...
- [BZOJ3714] Kuglarz
问题描述 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子i,i+1,-,j底下 ...
- mysql BETWEEN操作符 语法
mysql BETWEEN操作符 语法 作用:选取介于两个值之间的数据范围.这些值可以是数值.文本或者日期.大理石平台 语法:SELECT column_name(s) FROM table_name ...
- Java——容器
[容器API] <1>J2SDK所提供的容器位于java.util包内.
- 简记特定容器list和forward_list算法
链表类型list和forward_list有独有的sort.merge.remove.reverse和unique,而通用版本的是不能用于这两个类型的,因为所要求的迭代器不同,通用版本需要迭代器支持更 ...
- 【bzoj3262】陌上花开
题目描述: 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa& ...
- FMDB源码解析(上)-FMDB基本使用
目录 一: 初识FMDB 二: 基本使用 三: 基本操作 结束 最后更新:2017-02-22 2017, 说到做到 一: 初识FMDB FMDB是iOS平台的SQLite数据库框架 FMDB以OC的 ...
- 20175214 《Java程序设计》第11周学习总结
20175214 <Java程序设计>第11周学习总结 本周学习任务总结 1.根据<java2实用教程>和蓝墨云学习视频学习第十三章: 2.尝试将课本重点内容用自己的话复述手打 ...