多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享

Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现

import numpy as np
import time

1.1 Gauss-Seidel迭代算法

def GaussSeidel_tensor_V2(A,b,Delta,m,n,M):
start=time.perf_counter()
find=0
X=np.ones(n)
d=np.ones(n)
m1=m-1
m2=2-m
for i in range(M):
print('X',X)
x=np.copy(X)
#迭代更新
for j in range(n):
a=np.copy(A)
for k in range(m-2):
a=np.dot(a,x)
for k in range(n):
d[k]=a[k,k]
a[k,k]=m2*a[k,k]
x[j]=(b[j]-np.dot(a[j],x))/(m1*d[j])
#判断是否满足精度要求
if np.max(np.fabs(X-x))<Delta:
find=1
break
X=np.copy(x)
end=time.perf_counter()
print('时间:',end-start)
print('迭代',i)
return X,find,i,end-start

1.2张量A的生成函数和向量b的生成函数:

def Creat_A(m,n):#生成张量A
size=np.full(m, n)
X=np.ones(n)
while 1:
#随机生成给定形状的张量A
A=np.random.randint(-49,50,size=size)
#判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环
D=np.copy(A)
for i1 in range(n):
for i2 in range(n):
if i1!=i2:
D[i1,i2]=0
for i in range(m-2):
D=np.dot(D,X)
det=np.linalg.det(D)
if det!=0:
break
#将A的对角面张量扩大十倍,使对角面占优
for i1 in range(n):
for i2 in range(n):
if i1==i2:
A[i1,i2]=A[i1,i2]*10
print('A:')
print(A)
return A #由A和给定的X根据Ax**(m-1)=b生成向量b
def Creat_b(A,X,m):
a=np.copy(A)
for i in range(m-1):
a=np.dot(a,X)
print('b:')
print(a)
return a

1.3 对称张量S的生成函数:

def Creat_S(m,n):#生成对称张量B
size=np.full(m, n)
S=np.zeros(size)
print('S',S)
for i in range(4):
#生成n为向量a
a=np.random.random(n)*np.random.randint(-5,6)
b=np.copy(a)
#对a进行m-1次外积,得到秩1对称张量b
for j in range(m-1):
b=outer(b,a)
#将不同的b叠加得到低秩对称张量S
S=S+b
print('S:')
print(S)
return S
def outer(a,b):
c=[]
for i in b:
c.append(i*a)
return np.array(c)
return a

1.4 实验二

def test_2():
Delta=0.01#精度
m=3#A的阶数
n=3#A的维数
M=200#最大迭代步数
X_real=np.array( [2,3,4])
A=Creat_A(m,n)
b=Creat_b(A,X_real,m)
GaussSeidel_tensor_V2(A,b,Delta,m,n)

多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现的更多相关文章

  1. gauss——seidel迭代

    转载:https://blog.csdn.net/wangxiaojun911/article/details/6890282 Gauss–Seidelmethod 对应于形如Ax = b的方程(A为 ...

  2. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

  3. Floyd-Warshall算法,简称Floyd算法

    Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3). 使用条件&范围通常可以在任何图中使用,包括有向图.带负权边的图. Floyd-W ...

  4. 链接分析算法之:HITS算法

    链接分析算法之:HITS算法     HITS(HITS(Hyperlink - Induced Topic Search) ) 算法是由康奈尔大学( Cornell University ) 的Jo ...

  5. 机器学习:Python实现聚类算法(一)之AP算法

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

  6. 静态频繁子图挖掘算法用于动态网络——gSpan算法研究

    摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的 ...

  7. 机器学习算法总结(六)——EM算法与高斯混合模型

    极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未 ...

  8. 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)

    本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...

  9. 数据挖掘十大算法--K-均值聚类算法

    一.相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...

  10. 机器学习:Python实现聚类算法(二)之AP算法

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

随机推荐

  1. owaspbwa tickets

    owaspbwa tickets 来源  https://sourceforge.net/p/owaspbwa/tickets/ 192 SQL Injection in pic_id paramet ...

  2. JavaScript —— 正则表达式元字符

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...

  3. pylint在pycharm的使用及pylint的配置

    pylint作为python代码风格检查工具,接近 PEP8风格,在使用此方法的过程中,发现不仅能让代码更加规范,优雅,更能 发现 隐藏的bug. pylint在Pycharm中的2种安装方式: 第一 ...

  4. shell本地变量和环境变量的对比

  5. php pdo_mysql扩展安装

    本文内容是以 CentOS 为例,红帽系列的 Linux 方法应该都是如此,下面就详细说明步骤,在这里严重鄙视哪些内容??隆⑺档脑悠咴影说挠泄 PDO 编译安装的文章. 1.进入 PHP 的软件包 p ...

  6. java String练习题

    package java07; /* 题目: 定义一个方法,把数组{1,2,3}按照指定格式拼接成一个字符串,格式参照如下:[word1#word2#word3] 思路: 1.首先准备一个int[]数 ...

  7. AI比医生更好地发现皮肤癌,未来计算机技术可渗透医院

    未来机器人将取代医生?这可能是事实.为什么这么多年轻人选择计算机行业,因为这是一个趋势.据法新社报道,研究人员周二称,一项计算机技术比人类皮肤科医生在检测皮肤癌方面的表现要好得多,因为这项研究是为了寻 ...

  8. 学习加密(四)spring boot 使用RSA+AES混合加密,前后端传递参数加解密

      学习加密(四)spring boot 使用RSA+AES混合加密,前后端传递参数加解密 技术标签: RSA  AES  RSA AES  混合加密  整合   前言:   为了提高安全性采用了RS ...

  9. git 如何删除远程仓库的错误提交

    前言 最近一个版本发生产环境以后,忘了把分支切回开发分支,直接在release分支上开发新功能提交了....于是就需要去删除远程仓库的错误提交. git命令行实现 1.强制返回上次的版本(~1回退到上 ...

  10. java 序列化机制

    package stream; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io ...