Card

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 191    Accepted Submission(s): 52
Special Judge

Problem Description
There are x cards on the desk, they are numbered from 1 to x. The score of the card which is numbered i(1<=i<=x) is i. Every round BieBie picks one card out of the x cards,then puts it back. He does the same operation for b rounds. Assume that the score of the j-th card he picks is Sj . You are expected to calculate the expectation of the sum of the different score he picks.
 
Input
Multi test cases,the first line of the input is a number T which indicates the number of test cases. 
In the next T lines, every line contain x,b separated by exactly one space.

[Technique specification]
All numbers are integers.
1<=T<=500000
1<=x<=100000
1<=b<=5

 
Output
Each case occupies one line. The output format is Case #id: ans, here id is the data number which starts from 1,ans is the expectation, accurate to 3 decimal places.
See the sample for more details.
 
Sample Input
2
2 3
3 3
 
Sample Output
Case #1: 2.625
Case #2: 4.222

Hint

For the first case, all possible combinations BieBie can pick are (1, 1, 1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)
For (1,1,1),there is only one kind number i.e. 1, so the sum of different score is 1.
However, for (1,2,1), there are two kind numbers i.e. 1 and 2, so the sum of different score is 1+2=3.
So the sums of different score to corresponding combination are 1,3,3,3,3,3,3,2
So the expectation is (1+3+3+3+3+3+3+2)/8=2.625

 
 
我的做法是把它想象成一棵 m 层的 x 叉树(底层有 x^b 个叶子结点), 然后计算每个数字(1~x )要加的次数。
对于( i = 1 ~  x ) ..  
在第1层就要加 x^( m-1 ) 次 。
第2层就要加 x^(m-2) *(x-1) 次 。
....
第 i 层就要加 x^( m - i ) * (x-1)^( i - 1 )。
....
第m层就要加 x^(0) *(x-1)^(m-1) 次。
 
 以 i = 1 为例 ,如下图:
 
那么每个数加的次数就是  x^i * ( x - 1 )^( m - i - 1 ) 次 [ 0 <= i < m ]。
总共加的和 sum = sigma(j) * x^i * ( x - 1 )^( m - i - 1 ) 次 [ 1<=j <= x , 0 <= i < m ]。
sigma(j) [1<=j <= x ] = (1+x)*x/2。
那么 sum = (1+x) * x / 2 * x^i * ( x - 1 )^( m - i - 1 ) , [ 0 <= i < m ] 。 
那么期望 Ex = sum / ( x ^ n ) 。
 
 
官方题解是给出普通用概率方法求 :
设Xi代表分数为i的牌在b次操作中是否被选到,Xi=1为选到,Xi=0为未选到
那么期望EX=1*X1+2*X2+3*X3+…+x*Xx
Xi在b次中被选到的概率是1-(1-1/x)^b
那么E(Xi)= 1-(1-1/x)^b
那么EX=1*E(X1)+2*E(X2)+3*E(X3)+…+x*E(Xx)=(1+x)*x/2*(1-(1-1/x)^b)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <algorithm>
using namespace std;
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define lr rt<<1
#define rr rt<<1|1
typedef long long LL;
typedef pair<int,int>pii;
#define X first
#define Y second
const int oo = 1e9+;
const double PI = acos(-1.0);
const double eps = 1e- ;
const int N = ;
double n ;int m ;
void Run() {
scanf("%lf%d",&n,&m);
double avg = ( 1.0 + n ) * n / 2.0 * pow( 1.0 / n , (double) m ) , res = ;
for( int i = ; i < m ; ++i ) {
res += avg * pow( n - 1.0 , (double)i )*pow( (double)n, m-i-1.0 );
}
printf("%.3lf\n",res);
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
ios::sync_with_stdio(false);
int _ , cas = ; scanf("%d",&_);
while( _-- ){
printf("Case #%d: ",cas++); Run();
}
}
 

HDU 5159 Card( 计数 期望 )的更多相关文章

  1. hdu 5159 Card (期望)

    Problem Description There are x cards on the desk, they are numbered from 1 to x. The score of the c ...

  2. HDU 5159 Card (概率求期望)

    B - Card Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  3. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  4. hdu 4336 Card Collector(期望 dp 状态压缩)

    Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...

  5. HDU 5159 Card

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5159 题解: 考虑没一个数的贡献,一个数一次都不出现的次数是(x-1)^b,而总的排列次数是x^b, ...

  6. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  7. hdu 5868 Polya计数

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  8. hdu 2865 Polya计数+(矩阵 or 找规律 求C)

    Birthday Toy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. Card Collector(期望+min-max容斥)

    Card Collector(期望+min-max容斥) Card Collector woc居然在毫不知情的情况下写出一个min-max容斥 题意 买一包方便面有几率附赠一张卡,有\(n\)种卡,每 ...

随机推荐

  1. C#使用Process启动exe程序,不弹出控制台窗口的方法

    背景:使用wkhtmltopdf工具将html转换成pdf时,这个工具在进行转换时会弹出命令行窗口显示转换过程,但是在项目运行时弹出服务器突然弹出控制台窗口会很奇怪,尤其是当转换多个时.解决这个问题 ...

  2. python中字典类型的使用

    Python字典类型 字典是一种键值对的集合,键值对之间无序 字典类型的定义 采用{}或者dict()来创建字典对象,键值对之间使用:进行分隔. {<键1>:<值1>, < ...

  3. ELKStack之极速入门(上)

    ELKStack之极速入门(上) 链接:https://pan.baidu.com/s/1V2aYpB86ZzxL21Hf-AF1rA 提取码:7izv 复制这段内容后打开百度网盘手机App,操作更方 ...

  4. javascript实现下拉菜单的显示与隐藏

    demo.html <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  5. Codeforces 958F2 Lightsabers (medium) 尺取法

    题目大意: 输入n,m,分别表示人的个数和颜色的个数,下一行输入n个数,对应每个人的颜色,最后一行输入对应每个颜色的人应有的数量: 问是否能找出一个区间,满足条件但有多余的人,输出多余的人最少的个数, ...

  6. pspice介绍1(转载)

    PSpice的主要功能及特点: OrCAD软件的主要组成包括:OrCAD/Capture CIS.OrCAD/Layout Plus.OrCAD/Express及OrCAD/PSpice.它们分别是: ...

  7. loadRunner函数之lr_set_debug_message

    lr_set_debug_message:选择性开启扩展日志 vuser_init: vuser_init() { ; } Action: Action() { ExtendedLog(); // 开 ...

  8. POJ 3348 Cows (凸包模板+凸包面积)

    Description Your friend to the south is interested in building fences and turning plowshares into sw ...

  9. jmeter 自动生成测试报告命令

    环境要求 1:jmeter3.0版本之后开始支持动态生成测试报表 2:jdk版本1.7以上 3:需要jmx脚本文件 基本操作 1:在你的脚本文件路径下,执行cmd命令:jmeter -n -t tes ...

  10. 深入浅出HashMap

    /** *@ author ViVi *@date 2014-6-11 */ Hashmap是一种非常常用的.应用广泛的数据类型,最近研究到相关的内容,就正好复习一下.希望通过仪器讨论.共同提高~ 1 ...