PyTorch中的梯度累加

使用PyTorch实现梯度累加变相扩大batch

PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎

https://www.zhihu.com/question/303070254/answer/573037166

这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)

传统的训练函数,一个batch是这么训练的:

for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target) # 2. backward
optimizer.zero_grad() # reset gradient
loss.backward()
optimizer.step()
  1. 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
  2. optimizer.zero_grad()清空过往梯度;
  3. loss.backward()反向传播,计算当前梯度
  4. optimizer.step()根据梯度更新网络参数

简单的说就是进来一个batch的数据,计算一次梯度,更新一次网络

使用梯度累加是这么写的:

for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target) # 2.1 loss regularization
loss = loss/accumulation_steps
# 2.2 back propagation
loss.backward() # 3. update parameters of net
if((i+1)%accumulation_steps)==0:
# optimizer the net
optimizer.step() # update parameters of net
optimizer.zero_grad() # reset gradient
  1. 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
  2. loss.backward() 反向传播,计算当前梯度
  3. 多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
  4. 梯度累加了一定次数后,先 optimizer.step() 根据累计的梯度更新网络参数,然后 optimizer.zero_grad() 清空过往梯度,为下一波梯度累加做准备;

总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。

一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果 accumulation_steps 为8,则batchsize '变相' 扩大了8倍,是我们这种乞丐实验室解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。

更新1:关于BN是否有影响,之前有人是这么说的:

As far as I know, batch norm statistics get updated on each forward pass, so no problem if you don't do .backward() every time.

BN的估算是在forward阶段就已经完成的,并不冲突,只是 accumulation_steps=8 和真实的batchsize放大八倍相比,效果自然是差一些,毕竟八倍Batchsize的BN估算出来的均值和方差肯定更精准一些。

更新2:根据李韶华的分享,可以适当调低BN自己的momentum参数:

bn自己有个momentum参数:x_new_running = (1 - momentum) * x_running + momentum * x_new_observed. momentum越接近0,老的running stats记得越久,所以可以得到更长序列的统计信息

我简单看了下PyTorch 1.0的源码:https://github.com/pytorch/pytorch/blob/162ad945902e8fc9420cbd0ed432252bd7de673a/torch/nn/modules/batchnorm.py#L24,BN类里面momentum这个属性默认为0.1,可以尝试调节下。

借助梯度累加,避免同时计算多个损失时存储多个计算图

PyTorch中在反向传播前为什么要手动将梯度清零? - Forever123的回答 - 知乎

https://www.zhihu.com/question/303070254/answer/608153308

原因在于在PyTorch中,计算得到的梯度值会进行累加。

而这样的好处可以从内存消耗的角度来看。

1. Edition1

在PyTorch中,multi-task任务一个标准的train from scratch流程为:

for idx, data in enumerate(train_loader):
xs, ys = data
pred1 = model1(xs)
pred2 = model2(xs) loss1 = loss_fn1(pred1, ys)
loss2 = loss_fn2(pred2, ys) ******
loss = loss1 + loss2
optmizer.zero_grad()
loss.backward()
++++++
optmizer.step()

从PyTorch的设计原理上来说,在每次进行前向计算得到pred时,会产生一个**用于梯度回传的计算图,这张图储存了进行back propagation需要的中间结果,当调用了 ****.backward()** 后,会从内存中将这张图进行释放。

  • 上述代码执行到 ****** 时,内存中是包含了两张计算图的,而随着求和得到loss,这两张图进行了合并,而且大小的变化可以忽略。
  • 执行到 ++++++ 时,得到对应的grad值并且释放内存。这样,训练时必须存储两张计算图,而如果loss的来源组成更加复杂,内存消耗会更大。

2. Edition2

为了减小每次的内存消耗,借助梯度累加,又有 ,有如下变种。

for idx, data in enumerate(train_loader):
xs, ys = data optmizer.zero_grad() # 计算d(l1)/d(x)
pred1 = model1(xs) #生成graph1
loss = loss_fn1(pred1, ys)
loss.backward() #释放graph1 # 计算d(l2)/d(x)
pred2 = model2(xs)#生成graph2
loss2 = loss_fn2(pred2, ys)
loss.backward() #释放graph2 # 使用d(l1)/d(x)+d(l2)/d(x)进行优化
optmizer.step()

可以从代码中看出,利用梯度累加,可以在最多保存一张计算图的情况下进行multi-task任务的训练。

3. Other

另外一个理由就是在内存大小不够的情况下叠加多个batch的grad作为一个大batch进行迭代,因为二者得到的梯度是等价的。

综上可知,这种梯度累加的思路是对内存的极大友好,是由FAIR的设计理念出发的。

相关链接

【PyTorch】PyTorch中的梯度累加的更多相关文章

  1. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  2. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  3. [pytorch] PyTorch Hook

      PyTorch Hook¶ 为什么要引入hook? -> hook可以做什么? 都有哪些hook? 如何使用hook?   1. 为什么引入hook?¶ 参考:Pytorch中autogra ...

  4. 从头学pytorch(二) 自动求梯度

    PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...

  5. pytorch 查看中间变量的梯度

    pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermed ...

  6. Pytorch入门中 —— 搭建网络模型

    本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中 ...

  7. PyTorch官方中文文档:PyTorch中文文档

    PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch to ...

  8. PyTorch官方中文文档:torch

    torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA ...

  9. [Pytorch]Pytorch中tensor常用语法

    原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到 ...

随机推荐

  1. Gym - 102082G What Goes Up Must Come Down (树状数组+贪心)

    题意:有一个长度为n的序列,你每次可以选择两个相邻的元素交换,求把这个序列排成单峰序列的最少交换次数. 方法一:将元素按数值从大到小排序(保存原来的位置),把最大的插在中间,剩下的依次往两边放,依次考 ...

  2. 常见的 DOCTYPE 声明

    HTML 5 <!DOCTYPE html> HTML 4.01 Strict 这个 DTD 包含所有 HTML 元素和属性,但不包括表象或过时的元素(如 font ).框架集是不允许的. ...

  3. 图片url 设置大小

    假设有一个图片url为:http://localhost/PictureUrl/ImgURL.aspx?PicUrl=.//testImg\test.jpg (文件夹testImg下有个文件test. ...

  4. docker部署jar工程

    1.把要部署的功能打成jar 工程目录结构 pom文件 <?xml version="1.0" encoding="UTF-8"?> <pro ...

  5. Angular 主从组件

    此刻,HeroesComponent 同时显示了英雄列表和所选英雄的详情. 把所有特性都放在同一个组件中,将会使应用“长大”后变得不可维护. 你要把大型组件拆分成小一点的子组件,每个子组件都要集中精力 ...

  6. 手动升级 Confluence 6 - 升级 Confluence

    4. 备份 备份你的数据库,并且确定的你的数据库备份已经被正确的创建了.如果你的数据库不支持在线备份的话,你需要首先停止 Confluence 的运行. 备份你的 Confluence 安装目录(in ...

  7. postfix -- 发件调试

    按照教程(https://www.cnblogs.com/huandada/p/10554603.html)搭建好postfix之后,由于收件的邮件运营商的限制,部分邮件不能正常发送,需要更多其他配置 ...

  8. AtCoder AGC022C Remainder Game (图论)

    题目链接 https://atcoder.jp/contests/agc022/tasks/agc022_c 题解 大水题一道 就他给的这个代价,猜都能猜到每个数只能用一次 仔细想想,我们肯定是按顺序 ...

  9. 前端MVC、MVVM的简单实现

    MVC MVC是一种设计模式,它将应用划分为3个部分:数据(模型).展示层(视图)和用户交互层.结合一下下图,更能理解三者之间的关系.换句话说,一个事件的发生是这样的过程 用户和应用交互 控制器的事件 ...

  10. C++入门经典-例3.4-根据成绩划分等级

    1:代码如下: // 3.4.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...