PyTorch中的梯度累加

使用PyTorch实现梯度累加变相扩大batch

PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎

https://www.zhihu.com/question/303070254/answer/573037166

这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)

传统的训练函数,一个batch是这么训练的:

for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target) # 2. backward
optimizer.zero_grad() # reset gradient
loss.backward()
optimizer.step()
  1. 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
  2. optimizer.zero_grad()清空过往梯度;
  3. loss.backward()反向传播,计算当前梯度
  4. optimizer.step()根据梯度更新网络参数

简单的说就是进来一个batch的数据,计算一次梯度,更新一次网络

使用梯度累加是这么写的:

for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target) # 2.1 loss regularization
loss = loss/accumulation_steps
# 2.2 back propagation
loss.backward() # 3. update parameters of net
if((i+1)%accumulation_steps)==0:
# optimizer the net
optimizer.step() # update parameters of net
optimizer.zero_grad() # reset gradient
  1. 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
  2. loss.backward() 反向传播,计算当前梯度
  3. 多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
  4. 梯度累加了一定次数后,先 optimizer.step() 根据累计的梯度更新网络参数,然后 optimizer.zero_grad() 清空过往梯度,为下一波梯度累加做准备;

总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。

一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果 accumulation_steps 为8,则batchsize '变相' 扩大了8倍,是我们这种乞丐实验室解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。

更新1:关于BN是否有影响,之前有人是这么说的:

As far as I know, batch norm statistics get updated on each forward pass, so no problem if you don't do .backward() every time.

BN的估算是在forward阶段就已经完成的,并不冲突,只是 accumulation_steps=8 和真实的batchsize放大八倍相比,效果自然是差一些,毕竟八倍Batchsize的BN估算出来的均值和方差肯定更精准一些。

更新2:根据李韶华的分享,可以适当调低BN自己的momentum参数:

bn自己有个momentum参数:x_new_running = (1 - momentum) * x_running + momentum * x_new_observed. momentum越接近0,老的running stats记得越久,所以可以得到更长序列的统计信息

我简单看了下PyTorch 1.0的源码:https://github.com/pytorch/pytorch/blob/162ad945902e8fc9420cbd0ed432252bd7de673a/torch/nn/modules/batchnorm.py#L24,BN类里面momentum这个属性默认为0.1,可以尝试调节下。

借助梯度累加,避免同时计算多个损失时存储多个计算图

PyTorch中在反向传播前为什么要手动将梯度清零? - Forever123的回答 - 知乎

https://www.zhihu.com/question/303070254/answer/608153308

原因在于在PyTorch中,计算得到的梯度值会进行累加。

而这样的好处可以从内存消耗的角度来看。

1. Edition1

在PyTorch中,multi-task任务一个标准的train from scratch流程为:

for idx, data in enumerate(train_loader):
xs, ys = data
pred1 = model1(xs)
pred2 = model2(xs) loss1 = loss_fn1(pred1, ys)
loss2 = loss_fn2(pred2, ys) ******
loss = loss1 + loss2
optmizer.zero_grad()
loss.backward()
++++++
optmizer.step()

从PyTorch的设计原理上来说,在每次进行前向计算得到pred时,会产生一个**用于梯度回传的计算图,这张图储存了进行back propagation需要的中间结果,当调用了 ****.backward()** 后,会从内存中将这张图进行释放。

  • 上述代码执行到 ****** 时,内存中是包含了两张计算图的,而随着求和得到loss,这两张图进行了合并,而且大小的变化可以忽略。
  • 执行到 ++++++ 时,得到对应的grad值并且释放内存。这样,训练时必须存储两张计算图,而如果loss的来源组成更加复杂,内存消耗会更大。

2. Edition2

为了减小每次的内存消耗,借助梯度累加,又有 ,有如下变种。

for idx, data in enumerate(train_loader):
xs, ys = data optmizer.zero_grad() # 计算d(l1)/d(x)
pred1 = model1(xs) #生成graph1
loss = loss_fn1(pred1, ys)
loss.backward() #释放graph1 # 计算d(l2)/d(x)
pred2 = model2(xs)#生成graph2
loss2 = loss_fn2(pred2, ys)
loss.backward() #释放graph2 # 使用d(l1)/d(x)+d(l2)/d(x)进行优化
optmizer.step()

可以从代码中看出,利用梯度累加,可以在最多保存一张计算图的情况下进行multi-task任务的训练。

3. Other

另外一个理由就是在内存大小不够的情况下叠加多个batch的grad作为一个大batch进行迭代,因为二者得到的梯度是等价的。

综上可知,这种梯度累加的思路是对内存的极大友好,是由FAIR的设计理念出发的。

相关链接

【PyTorch】PyTorch中的梯度累加的更多相关文章

  1. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  2. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  3. [pytorch] PyTorch Hook

      PyTorch Hook¶ 为什么要引入hook? -> hook可以做什么? 都有哪些hook? 如何使用hook?   1. 为什么引入hook?¶ 参考:Pytorch中autogra ...

  4. 从头学pytorch(二) 自动求梯度

    PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...

  5. pytorch 查看中间变量的梯度

    pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermed ...

  6. Pytorch入门中 —— 搭建网络模型

    本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中 ...

  7. PyTorch官方中文文档:PyTorch中文文档

    PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch to ...

  8. PyTorch官方中文文档:torch

    torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA ...

  9. [Pytorch]Pytorch中tensor常用语法

    原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到 ...

随机推荐

  1. 【洛谷P4309】最长上升子序列

    题目大意:给定一个序列,初始为空.现在我们将 1 到 N 的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 题解:学会了 rope 操 ...

  2. HandlerAdapter解析参数过程之HandlerMethodArgumentResolver

    在我们做Web开发的时候,会提交各种数据格式的请求,而我们的后台也会有相应的参数处理方式.SpringMVC就为我们提供了一系列的参数解析器,不管你是要获取Cookie中的值,Header中的值,JS ...

  3. QT:QSS字体设置

    css,qss font-family常用的黑体宋体等字体中英文对照 当qss使用中文设置字体时,无法生效.因为qss不支持中文设置字体,所以下面给出一些常用的黑体宋体字体中英文对照. 微软雅黑: M ...

  4. cursor(鼠标手型)属性

    ㈠简单介绍 在浏览网页时,通常看到的鼠标光标形状有箭头.手形.沙漏等,而在 windows 中实际看到的鼠标指针种类比这个还要多. 一般情况下,鼠标光标的形状由浏览器负责控制,大多数情况的光标形状为箭 ...

  5. C语言 - 堆和栈

    一.堆内存 1.就是程序员手动管理的一块内存,在C语言中,可以理解为用malloc.realloc等申请空间的一些函数,这些函数所申请的空间就是堆空间 2.C语言中,堆空间是申请和释放 malloc/ ...

  6. javascript中继承方式及优缺点(一)

    分别介绍原型链继承.call/apply继承(借用构造函数继承).组合继承.原型式继承.寄生式继承.寄生组合式继承 1. 原型链继承 核心:将父类的实例作为子类的原型 function SuperTy ...

  7. websocket协议解决消息发送问题 Could not decode a text frame as UTF-8.

    在使用websocket 时出现了Could not decode a text frame as UTF-8 首次连接成功当发送消息时,出现了编码作错误 第一请求页面时,连接成功 当发送消息时,不加 ...

  8. 如何将项目托管到Github上

    将本地项目放到GitHub上托管并展示 传送门 利用Github Pages展示自己的项目 传送门 git Please tell me who you are解决方法 传送门 git config ...

  9. java 基础类型和包装类的详解

    摘自:JAVA中基本类型的包装类 1. 包装类把基本类型数据转换为对象     每个基本类型在java.lang包中都有一个相应的包装类 2. 包装类有何作用     提供了一系列实用的方法     ...

  10. 第七周总结&第五次实验报告

    学习总结 这周我们加深了对抽象类与接口的学习,获得的知识点也比上周多了许多,抽象类与接口很相似,就比如别人还没有做完的是交给你来做,而他那些样式都做好了,你只需要完善即可 但也有不同点. 区别点 抽象 ...