[APIO 2010] [LOJ 3144] 奇怪装置 (数学)

题面

分析

考虑t1,t2时刻坐标相同的条件

\[\begin{cases} t_1+\lfloor \frac{t_1}{B} \rfloor \equiv t_2+\lfloor \frac{t_2}{B} \rfloor (\mathrm{mod}\ A) \\ t_1 \equiv t_2 (\mathrm{mod}\ B)\\ \end{cases}
\]

由第二个式子,可以令\(t_1=t_2+Bk(k \in N)\)

代入式子1,\(t_2+Bk+\lfloor \frac{t_2}{B}+k \rfloor \equiv t_2+\lfloor \frac{t_2}{B} \rfloor(\mathrm{mod} \ A)\)

消元得\((B+1)k \equiv 0 (\mathrm{mod} \ A)\)

因此\(k|\frac{A}{gcd(A,B+1)}\),

代入上式,\(t_1=t_2+B\frac{A}{gcd(A,B+1)}(k \in N)\)

\(t_1 \equiv t _2 \ (\mathrm{mod} \frac{AB}{gcd(A,B+1)})\)

因此,可以把l,r取模\(\frac{AB}{gcd(A,B+1)}\),然后问题就变成在\([0,\frac{AB}{gcd(A,B+1)}]\)上有若干条线段,求线段的并

直接排序再\(O(n)\)扫一遍即可

注意\(\frac{AB}{gcd(A,B+1)}\)可能会超过long long范围,但注意到l,r都\(\leq 2 \times 10^{18}\),如果\(\frac{AB}{gcd(A,B+1)}\)超过就强行设成$ 2 \times 10^{18}$

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 1000000
#define maxr 2e18
using namespace std;
typedef long long ll;
ll n,A,B;
inline ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
} struct seg{
ll l;
ll r;
seg(){ }
seg(ll _l,ll _r){
l=_l;
r=_r;
}
friend bool operator < (seg p,seg q){
if(p.l==q.l) return p.r<q.r;
else return p.l<q.l;
}
}a[maxn+5],b[maxn*2+5];
int cnt=0;
int main(){
scanf("%I64d %I64d %I64d",&n,&A,&B);
for(int i=1;i<=n;i++){
scanf("%I64d %I64d",&a[i].l,&a[i].r);
}
ll C=A/gcd(A,B+1);
if(maxr/B<=C) C=maxr; //B*C<=2e18
else C=C*B;
for(int i=1;i<=n;i++){
if(a[i].r-a[i].l>=C){
printf("%I64d\n",C);
return 0;
}
if(a[i].l%C<=a[i].r%C){
b[++cnt]=seg(a[i].l%C,a[i].r%C);
}else{
b[++cnt]=seg(0,a[i].r%C);
b[++cnt]=seg(a[i].l%C,C-1);
}
}
sort(b+1,b+1+cnt);
// cnt=unique(b+1,b+1+cnt)-b-1;
ll l=b[1].l,r=b[1].r;
ll ans=0;
for(int i=2;i<=cnt;i++){
if(b[i].l>r+1){
ans+=(r-l+1);
l=b[i].l;
r=b[i].r;
}else if(b[i].r>r){
r=b[i].r;
}
}
ans+=r-l+1;
printf("%I64d\n",ans);
}

[APIO 2010] [LOJ 3144] 奇怪装置 (数学)的更多相关文章

  1. 【LOJ#3144】[APIO2019]奇怪装置(数论)

    [LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...

  2. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  3. 【LG5444】[APIO2019]奇怪装置

    [LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...

  4. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  5. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  6. [APIO2019T1]奇怪装置

    考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...

  7. 题解-APIO2019奇怪装置

    problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...

  8. 【BZOJ 1911】【APIO 2010】特别行动队

    http://www.lydsy.com/JudgeOnline/problem.php?id=1911 夏令营里斜率优化的例题,我调了一晚上,真是弱啊. 先推公式吧($sum_i$表示$x_1 \d ...

  9. [bzoj 1911][Apio 2010]特别行动队(斜率优化DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1911 分析: 首先可以的到裸的方程f[i]=max{f[j]+a*(Si-Sj)^2+b*(S ...

随机推荐

  1. Centos7没有Ifconfig命令该怎么办?

    centos7没有ifconfig命令该怎么办? linux系统查看ip地址常用命令是[ifconfig],CentOS 7.0最小安装是没有ifconfig命令怎么办?当然可用[ip addr]查看 ...

  2. bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...

  3. 解决git 命令出现end问题

    当使用git branch -r是当分支有很多的时候出现end 使用:q可以退出

  4. css3圆角边框

    圆角边框 一.border-radius属性简介   为元素添加圆角边框,可以对元素的四个角进行圆角设置(属性不具有继承性) 二.border-radius定义方法 border-radius属性有两 ...

  5. React Native 之FlatList 下拉刷新和上拉加载更多

    接上一篇代码: 只修改了FlatListDemo.js里面的代码 import React, {Fragment,Component} from 'react'; import { SafeAreaV ...

  6. php大文件下载+断点续传

    如果我们的网站提供文件下载的服务,那么通常我们都希望下载可以断点续传(Resumable Download),也就是说用户可以暂停下载,并在未来的某个时间从暂停处继续下载,而不必重新下载整个文件. 通 ...

  7. POJ 3764 The xor-longest Path ( 字典树求异或最值 && 异或自反性质 && 好题好思想)

    题意 : 给出一颗无向边构成的树,每一条边都有一个边权,叫你选出一条路,使得此路所有的边的异或值最大. 分析 : 暴力是不可能暴力的,这辈子不可能暴力,那么来冷静分析一下如何去做.假设现在答案的异或值 ...

  8. 2017南宁网络赛 Problem J Minimum Distance in a Star Graph ( 模拟 )

    题意 : 乱七八糟说了一大堆,实际上就是问你从一个序列到另个序列最少经过多少步的变化,每一次变化只能取序列的任意一个元素去和首元素互换 分析 : 由于只能和第一个元素去互换这种操作,所以没啥最优的特别 ...

  9. redis过期策略设置

    中6中过期策略的具体方式. redis 中的默认的过期策略是volatile-lru .设置方式 可以通过命令直接设置 config set maxmemory-policy volatile-lru ...

  10. Spring 使用RedisTemplate操作Redis

    首先添加依赖: <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> < ...