[APIO 2010] [LOJ 3144] 奇怪装置 (数学)

题面

分析

考虑t1,t2时刻坐标相同的条件

\[\begin{cases} t_1+\lfloor \frac{t_1}{B} \rfloor \equiv t_2+\lfloor \frac{t_2}{B} \rfloor (\mathrm{mod}\ A) \\ t_1 \equiv t_2 (\mathrm{mod}\ B)\\ \end{cases}
\]

由第二个式子,可以令\(t_1=t_2+Bk(k \in N)\)

代入式子1,\(t_2+Bk+\lfloor \frac{t_2}{B}+k \rfloor \equiv t_2+\lfloor \frac{t_2}{B} \rfloor(\mathrm{mod} \ A)\)

消元得\((B+1)k \equiv 0 (\mathrm{mod} \ A)\)

因此\(k|\frac{A}{gcd(A,B+1)}\),

代入上式,\(t_1=t_2+B\frac{A}{gcd(A,B+1)}(k \in N)\)

\(t_1 \equiv t _2 \ (\mathrm{mod} \frac{AB}{gcd(A,B+1)})\)

因此,可以把l,r取模\(\frac{AB}{gcd(A,B+1)}\),然后问题就变成在\([0,\frac{AB}{gcd(A,B+1)}]\)上有若干条线段,求线段的并

直接排序再\(O(n)\)扫一遍即可

注意\(\frac{AB}{gcd(A,B+1)}\)可能会超过long long范围,但注意到l,r都\(\leq 2 \times 10^{18}\),如果\(\frac{AB}{gcd(A,B+1)}\)超过就强行设成$ 2 \times 10^{18}$

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 1000000
#define maxr 2e18
using namespace std;
typedef long long ll;
ll n,A,B;
inline ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
} struct seg{
ll l;
ll r;
seg(){ }
seg(ll _l,ll _r){
l=_l;
r=_r;
}
friend bool operator < (seg p,seg q){
if(p.l==q.l) return p.r<q.r;
else return p.l<q.l;
}
}a[maxn+5],b[maxn*2+5];
int cnt=0;
int main(){
scanf("%I64d %I64d %I64d",&n,&A,&B);
for(int i=1;i<=n;i++){
scanf("%I64d %I64d",&a[i].l,&a[i].r);
}
ll C=A/gcd(A,B+1);
if(maxr/B<=C) C=maxr; //B*C<=2e18
else C=C*B;
for(int i=1;i<=n;i++){
if(a[i].r-a[i].l>=C){
printf("%I64d\n",C);
return 0;
}
if(a[i].l%C<=a[i].r%C){
b[++cnt]=seg(a[i].l%C,a[i].r%C);
}else{
b[++cnt]=seg(0,a[i].r%C);
b[++cnt]=seg(a[i].l%C,C-1);
}
}
sort(b+1,b+1+cnt);
// cnt=unique(b+1,b+1+cnt)-b-1;
ll l=b[1].l,r=b[1].r;
ll ans=0;
for(int i=2;i<=cnt;i++){
if(b[i].l>r+1){
ans+=(r-l+1);
l=b[i].l;
r=b[i].r;
}else if(b[i].r>r){
r=b[i].r;
}
}
ans+=r-l+1;
printf("%I64d\n",ans);
}

[APIO 2010] [LOJ 3144] 奇怪装置 (数学)的更多相关文章

  1. 【LOJ#3144】[APIO2019]奇怪装置(数论)

    [LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...

  2. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  3. 【LG5444】[APIO2019]奇怪装置

    [LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...

  4. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  5. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  6. [APIO2019T1]奇怪装置

    考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...

  7. 题解-APIO2019奇怪装置

    problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...

  8. 【BZOJ 1911】【APIO 2010】特别行动队

    http://www.lydsy.com/JudgeOnline/problem.php?id=1911 夏令营里斜率优化的例题,我调了一晚上,真是弱啊. 先推公式吧($sum_i$表示$x_1 \d ...

  9. [bzoj 1911][Apio 2010]特别行动队(斜率优化DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1911 分析: 首先可以的到裸的方程f[i]=max{f[j]+a*(Si-Sj)^2+b*(S ...

随机推荐

  1. 如何用DNS+GeoIP+Nginx+Varnish做世界级的CDN

    如何用DNS+GeoIP+Nginx+Varnish做世界级的CDN     如何用BIND, GeoIP, Nginx, Varnish来创建你自己的高效的CDN网络?CDN,意思是Content ...

  2. css图标与文字对齐实现方法

    1.移动端(安卓设备.ios设备)图标文字垂直居中对齐的最佳常用解决方案是采用弹性盒子布局,可以快捷有效实现子元素未知高度绝对垂直居中对齐.PC端考虑到兼容性的问题,一般不推荐使用弹性盒子,依旧只能采 ...

  3. [BZOJ3714] Kuglarz

    问题描述 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子i,i+1,-,j底下 ...

  4. vue面试题专题

    1,v-if和v-show的作用是什么?有什么区别? v-if:        创建---删除,没有元素.切换开销大.适合不频繁切换的情况用. 例子:制作搜索框,导航栏和搜索框重叠的两个框,点击搜索图 ...

  5. C#项目类型分三种,Dos(控制台),c/s(客户端与服务器),b/s(浏览器/服务器)

  6. 【PowerOJ1738&网络流24题】最小路径覆盖问题 (最大流)

    题意: 思路: [问题分析] 有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决. [建模方法] 构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi.对于原图 ...

  7. 基于Nginx的https服务

    1.HTTPS协议的实现 1.为什么需要HTTPS? 原因:HTTP不安全 1.传输数据被中间人盗用.信息泄露 2.数据内容劫持.篡改 对传输内容进行加密以及身份验证 2.对称加密 非对称加密 3.H ...

  8. 一篇面试的考题----jQuery

    一.jQuery测试题 下面哪种不是jquery的选择器?(单选)A.基本选择器 B.后代选择器 C.类选择器 D.进一步选择器考点:jquery的选择器 (C) 当DOM加载完成后要执行的函数,下面 ...

  9. jdk7.x对Jenkins上的SonarQube Plugin的支持不足,替换方式

    Jenkins.war放在Tomcat7下,完成各种配置,包括Jenkins中JDK,Maven,Git等. 最初的配置为Tomcat7, JDK7.x. 因为要在Jenkins上安装SonarQub ...

  10. 基于BootStrap的分页代码实现

    public class PageUtil { //targetUrl 访问url totalNum总记录数 currentPage 当前页数 pageSize每页的大小 public static ...