CH5101 LCIS(最长公共上升子序列) 题解
每日一题 day16 打卡
Analysis
设F[i,j]表示A[1..i]与B[1..j]并且以B[j]结尾的两段最长公共上升子序列,那么我们可以发现这样的转移
(1)A[i]==B[j]时
F[i][j]=max(F[i-1][k])+1,其中k满足1<=k<=j并且B[j]<A[i].
(2)如果不相等:
F[i][j]=F[i-1][j]
这样我们三重循环就可以搞定。但是这里是可以优化的。
我们考虑这样的一个事实:我们知道这样的一个事实,再第二层循环的时候,我们其实在枚举j。我们把满足条件的k叫做决策集合:S(i,j)。在j增加的时候,我们需要判断j是否可以被加入这个集合。所以我们需要检查:B[j]和A[i]的大小关系。如果满足b[j]<a[i],那么我们就可以把他加入新的集合,这个时候我们只需要记录上一次的最大值,没必要在循环找一遍。这样就可以优化一层循环。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define maxn 3000+10
using namespace std;
inline int read()
{
int x=0;
bool f=1;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+c-'0';
if(f) return x;
return 0-x;
}
inline void write(int x)
{
if(x<0){putchar('-');x=-x;}
if(x>9)write(x/10);
putchar(x%10+'0');
}
int n,ans;
int a[maxn],b[maxn],dp[maxn][maxn];
signed main()
{
n=read();
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<=n;i++) b[i]=read();
for(int i=1;i<=n;i++) dp[i][0]=dp[0][i]=0;
for(int i=1;i<=n;i++)
{
int val=0;
for(int j=1;j<=n;j++)
{
if(a[i]==b[j]) dp[i][j]=val+1;
else dp[i][j]=dp[i-1][j];
if(b[j]<a[i]) val=max(val,dp[i-1][j]);
}
}
for(int i=1;i<=n;i++) ans=max(ans,dp[n][i]);
write(ans);
return 0;
}
CH5101 LCIS(最长公共上升子序列) 题解的更多相关文章
- CF10D LCIS 最长公共上升子序列
题目描述 This problem differs from one which was on the online contest. The sequence a1,a2,...,an a_{1}, ...
- [CodeForces10D]LCIS(最长公共上升子序列) - DP
Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行 ...
- LCIS最长公共上升子序列
最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列. 这道题目是LCS和LIS的综合. 在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前 ...
- LCIS 最长公共上升子序列问题DP算法及优化
一. 知识简介 学习 LCIS 的预备知识: 动态规划基本思想, LCS, LIS 经典问题:给出有 n 个元素的数组 a[] , m 个元素的数组 b[] ,求出它们的最长上升公共子序列的长度. 例 ...
- LCIS(最长公共上升子序列)Vijos1264神秘的咒语
描述 身为拜月教的高级间谍,你的任务总是逼迫你出生入死.比如这一次,拜月教主就派你跟踪赵灵儿一行,潜入试炼窟底. 据说试炼窟底藏着五行法术的最高法术:风神,雷神,雪妖,火神,山神的咒语.为了习得这些法 ...
- LCIS 最长公共上升子序列
这个博客好久没写了,这几天为了准备清华交叉研究院的夏令营,在复习大一大二ACM训练时的一些基础算法,正好碰到LICS,发现没有写在博客里,那就顺便记录一下好了. 参考链接:http://blog.cs ...
- LCIS(最长公共上升子序列)模板
求出LCIS并输出其路径. 1 #include <iostream> 2 #include <cstdio> 3 #include <string> 4 #inc ...
- CodeForces 10D. LCIS 最长公共上升子序列模板题 + 打印路径
推荐一篇炒鸡赞的blog. 以下代码中有打印路径. #include <algorithm> #include <iostream> #include <cstring& ...
- hdu1423 最长公共上升子序列
题目传送门 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】
Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...
随机推荐
- 面试题之web访问突然延迟问题
前言 面试官经常会问平时访问正常的网页突然变慢是什么原因引起的,说明下你排查的思路:我认为这种问题很能考察一个人的综合知识面,既能融通的贯彻知识点,也能展看对每个知识点进行详细的考问. 下面我按我自己 ...
- 【HC89S003F4开发板】 8c转义成汇编工程
HC89S003F4开发板建立汇编工程 选择编译文件 @选用开发板闪灯例程,将例程删除多余的注释,后面生成的文件会更直观. #define ALLOCATE_EXTERN #include " ...
- Cortex_m7内核cache深入了解和应用
一,cache概述 从下图可以看出,从M7内核才开始有的cache,这对于从M0,M3,M4一路走来的小伙伴来说,多了一个cache就多了一个障碍. Cortex-M7 core with 32K/3 ...
- MyBatis Generator 自动生成的POJO对象的使用(一)
MyBatis Generator 会自动生成以下几种类型的对象(除非你使用MyBatis3DynamicSql 的运行环境): Java Model Objects(总是生成) SQL Map Fi ...
- 服务篇:我的第一WebService应用
一.我的第一个Webservice应用 1.新建一个空项目 2.添加新项,加入asmx,并再浏览器浏览 3.添加一个aspx网页 4.右键引用→添加服务引用→高级→添加Web引用,输入再浏览器浏览的a ...
- 自定义AuthorizeFilter
using Microsoft.AspNetCore.Authorization; using Microsoft.AspNetCore.Authorization.Infrastructure; u ...
- Python爬虫之BeautifulSoap的用法
1. Beautiful Soup的简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据.官方解释如下: Beautiful Soup提供一些简单的.pyt ...
- Python 内置函数进制转换的用法(十进制转二进制、八进制、十六进制)
使用Python内置函数:bin().oct().int().hex()可实现进制转换. 先看Python官方文档中对这几个内置函数的描述: bin(x)Convert an integer numb ...
- switch语句中 参数的类型
switch可作用于char byte short int switch可作用于char byte short int对应的包装类 switch不可作用于long double float boole ...
- 最新版Navicate破解激活
2019年5月5日激活成功 版本12.1.18 Navicat12.1下载地址 http://www.navicat.com.cn/download/navicat-premium有32位和64位,大 ...