Acwing-287-积蓄程度(树上DP, 换根)
链接:
https://www.acwing.com/problem/content/289/
题意:
有一个树形的水系,由 N-1 条河道和 N 个交叉点组成。
我们可以把交叉点看作树中的节点,编号为 1~N,河道则看作树中的无向边。
每条河道都有一个容量,连接 x 与 y 的河道的容量记为 c(x,y)。
河道中单位时间流过的水量不能超过河道的容量。
有一个节点是整个水系的发源地,可以源源不断地流出水,我们称之为源点。
除了源点之外,树中所有度数为 1 的节点都是入海口,可以吸收无限多的水,我们称之为汇点。
也就是说,水系中的水从源点出发,沿着每条河道,最终流向各个汇点。
在整个水系稳定时,每条河道中的水都以单位时间固定的水量流向固定的方向。
除源点和汇点之外,其余各点不贮存水,也就是流入该点的河道水量之和等于从该点流出的河道水量之和。
整个水系的流量就定义为源点单位时间发出的水量。
在流量不超过河道容量的前提下,求哪个点作为源点时,整个水系的流量最大,输出这个最大值。
思路:
建树, 第一遍DFS跑以1为根, 即以1为源点的最大流量.
第二遍不断换根去求.
对于个点, 其父节点已经计算完毕, 推出式子,先算出除当前节点外所有节点到根节点的流量.
再将其累积到当前节点.
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 2e5+10;
const int INF = 1e9;
vector<pair<int, LL> > G[MAXN];
LL Dp1[MAXN], Dp2[MAXN];
int n;
LL Dfs1(int u, int fa)
{
LL flow = 0;
for (int i = 0;i < G[u].size();i++)
{
int node = G[u][i].first;
LL maxflow = G[u][i].second;
if (node == fa)
continue;
LL tmp = Dfs1(node, u);
flow += min(tmp, maxflow);
}
if (flow == 0)
{
Dp1[u] = INF;
return INF;
}
else
{
Dp1[u] = flow;
return flow;
}
}
LL Dfs2(int u, int fa)
{
for (int i = 0;i < G[u].size();i++)
{
int node = G[u][i].first;
LL maxflow = G[u][i].second;
if (node == fa)
continue;
if (Dp1[node] == INF)
{
Dp2[node] = maxflow;
}
else
{
LL tmp = Dp2[u]-min(Dp1[node], maxflow);
Dp2[node] = Dp1[node] + min(maxflow, tmp);
}
Dfs2(node, u);
}
}
int main()
{
int t;
scanf("%d", &t);
int u, v, w;
while (t--)
{
memset(Dp1, 0, sizeof(Dp1));
memset(Dp2, 0, sizeof(Dp2));
scanf("%d", &n);
for (int i = 1;i <= n;i++)
G[i].clear();
for (int i = 1;i < n;i++)
{
scanf("%d%d%d", &u, &v, &w);
G[u].push_back(make_pair(v, w));
G[v].push_back(make_pair(u, w));
}
Dfs1(1, 0);
Dp2[1] = Dp1[1];
Dfs2(1, 0);
LL res = 0;
for (int i = 1;i <= n;i++)
res = max(res, Dp2[i]);
// for (int i = 1;i <= n;i++)
// cout << Dp2[i] << ' ' ;
// cout << endl;
printf("%lld\n", res);
}
return 0;
}
Acwing-287-积蓄程度(树上DP, 换根)的更多相关文章
- 2019ICPC沈阳网络赛-D-Fish eating fruit(树上DP, 换根, 点分治)
链接: https://nanti.jisuanke.com/t/41403 题意: State Z is a underwater kingdom of the Atlantic Ocean. Th ...
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- [题解](树形dp/换根)小x游世界树
2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- poj3585 Accumulation Degree[树形DP换根]
思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...
- poj3585 Accumulation Degree(树形dp,换根)
题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...
- cf219d 基础换根法
/*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...
- POJ3585:Accumulation Degree(换根树形dp)
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3425 Accepted: 85 ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
随机推荐
- lua介绍及环境搭建(一)
一.介绍 1.简介 Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能. 其设计目的是为了嵌入应用程序中,从 ...
- spring入门一:框架整体简介
1:spring的基本框架主要包含六大模块:DAO.ORM.AOP.JEE.WEB.CORE DAO:(Data Access Object) 数据访问对象,是一个面向对象的数据库接口. ORM:(O ...
- php 求两个数组的差集应该注意的事情
对于 phper 来说 array_diff 这个函数应该知道它的用途,获取两个数组的差集,我理解中的差集是这样的 但是执行下代码会发现结果并不是 <?php $a = [1,2,3,4,5]; ...
- go的命令行参数
package main import ( "fmt" "os" ) func main() { var s, sep string for i := 1; i ...
- python基础知识0-1
绝对值:abs age = -19 age.__abs__() 19 相加: add age.__add__() 与运算:and age.__add__() 比较两个数大小:cmp age._cmp_ ...
- react项目中关于img标签的src属性的使用
在一个html文件中,img的src属性赋值为相对路径或绝对路径的字符串即可访问到图片.如下: <img src="../images/photo.png"/> 但在j ...
- python 爬取文章后存储excel 以及csv
import requests from bs4 import BeautifulSoup import random import openpyxl xls=openpyxl.Workbook() ...
- [转载]linux的top命令中cpu信息的含义
https://www.cnblogs.com/wjoyxt/p/4918742.html 原文很好,我就不摘录了.
- 关于Mybatis的几件小事(二)
一.MyBatis缓存机制 1.简介 Mybatis包含了一个非常强大的查询缓存的特性,它可以非常方便地配置和定制. 缓存key极大提高查询效率 MyBatis系统中默认定义了两次缓存 默认情况下,只 ...
- 【shell脚本】字符串和数组的使用
字符串 可以使用单引号和双引号定义字符串变量但是单引号中不支持变量解析 #! /bin/bashusername="mayuan" str_1="hello ${user ...