SUM

  题意:f(n)是n可以拆成多少组n=a*b,a和b都是不包含平方因子的方案数目,对于a!=b,n=a*b和n=b*a算两种方案,求i=1nf(i)

  首先我们可以知道,n=1时f(1)=1,

  然后我们继续分析,当n为素数p时,只能拆成n=1*p和n=p*1这两种,所以f(p)=2,

  而当n=两个质数的乘积时,对于n=左*右,p1跟p2可以任意分配在左和右,它们的方案是类乘的,所以f(p1*p2)=f(p1)*f(p2)

  这里可以看出f(n)是个积性函数,那说明我们可以把它通过线性筛筛出来。

  那我们就要考虑n=pk的时候,当k>2时,对于n=左*右,不管哪个方案,左或者右那边必定有一边是存在因子包含p2的,所以此时f(pk)=0,k>2

  k=1时便是n=p,而k==2时呢,p只能分别在左右两边各一个,f(p2)=1

  最后推广n=p1k1*p2k2的时候,k1,k2肯定都不能>2,然后就是(0,0),(0,1),(0,2),(1,0),(1,1,)(1,2),(2,0)(2,1)(2,2)这九种,推导一下就是f(p1k1*p2k2)=f(p1k1)*f(p2k2)

  具体编程实现上的话,因为欧拉筛对于每个数来说,是通过它的最小质因子来筛掉它,那么我们可以记录每个数的最小质因子的指数exp,详情见注释

 #include<cstdio>
typedef long long ll;
const int N=;
bool nop[N]={false};
int pn,pri[N/],exp[N],f[N];
void init()
{
f[]=;
for(int i=;i<N;i++)
{
if(!nop[i])
{
f[i]=;
exp[i]=;
pri[pn++]=i;
}
for(int j=;j<pn&&1ll*i*pri[j]<N;j++)
{
int pp=i*pri[j];
nop[pp]=true;
//欧拉筛中,pri[j]是pp的最小质因子
if(i%pri[j]==)
{
//i的质因子有pri[j],pp的最小质因子的指数就是exp[i]+1
exp[pp]=exp[i]+;
if(exp[pp]>)
f[pp]=;
else
f[pp]=f[i/pri[j]];
//在i的方案上,再加入一个pri[j],不能跟i中原来有的
//pri[j]在同一边,而在对立边时,i中原来有的pri[j]
//在左,在右都一样,对方案没有了影响,所以
//f[i*pri[j]]=f[i/pri[j]];
break;
}
//i的质因子没有pri[j],那么pp中只有一个pri[j]
exp[pp]=;
f[pp]=f[i]*f[pri[j]];
}
}
for(int i=;i<N;i++)
f[i]+=f[i-];
}
int main()
{
init();
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%d\n",f[n]);
}
return ;
}

线性啊欧拉啊

  对于f[pp]=f[i/pri[j]]处,我说得不是很清楚,也不知道怎么表达那个意思,可以自行模拟体会一下。

ACM-ICPC 2018 南京赛区网络预赛Sum,线性筛处理积性函数的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 Sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  2. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  3. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  4. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  5. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

  6. ACM-ICPC 2018 南京赛区网络预赛(12/12)

    ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...

  7. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  8. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  9. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

随机推荐

  1. 剑指offer29:最小的k个数

    1 题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 2 思路和方法,C++核心代码 2.1 sort()函数,ve ...

  2. Synchronized&Lock&AQS详解

    加锁目的:由于线程执行的过程是不可控的,所以需要采用同步机制来协同对对象可变状态的访问. 加锁方式:java锁分为两种--显示锁和隐示锁,本质区别在于显示锁需要的是程序员自己手动的进行加锁与解锁如Re ...

  3. JSONObject,JSONArray,对象,数组互相转化

    json类型对象转化成对象类型 JSONObject.toJavaObject(jsonObj, Object.class) json类型对象转化为List类型 JSONArray.parseArra ...

  4. [NOIP2018模拟赛10.19]只会暴力报告

    闲扯 今天又是暴力满满(并不)的一天呢 昨天老师说了分数要正态分布,今天看起来...不过暴力分很多,虽然我人太傻逼又没打满 T1 woc?不是说送分的吗,看起来又是个树形DP神题,暴力告辞,链上的搞一 ...

  5. Pytorch入门随手记

    Pytorch入门随手记 什么是Pytorch? Pytorch是Torch到Python上的移植(Torch原本是用Lua语言编写的) 是一个动态的过程,数据和图是一起建立的. tensor.dot ...

  6. sql server 查看表中某一字段的排序规则

    SELECT o.name,o.object_id,c.name,c.column_id,c.collation_name   FROM sys.columns c      JOIN sys.obj ...

  7. 温度传感器 DS18B20

    1. 实物图 2. 64位(激)光刻只读存储器 开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码 光刻ROM的作用是使每一个DS18B ...

  8. Windows Ping | Tracert 's Bat 脚本并行测试

    系统:windows 需求:测试多台PC输出三个网站并行ping.tracert结果,多台PC同时进行. 说明:以www.baidu.com.www.sina.com.cn.www.tencent.c ...

  9. 微信小程序开发(九)获取手机连接的wifi信息

    // succ.wxml <view>WIFI ssid:{{wifissid}}</view> <view>WIFI bssid:{{wifiBssid}}< ...

  10. Hadoop_33_Hadoop HA的搭建

    Hadoop HA的搭建,可参考链接:https://blog.csdn.net/mrbcy/article/details/64939623 说明:    1.在hadoop2.0中通常由两个Nam ...