feature   

strom (trident) spark streaming 说明
并行框架
基于DAG的任务并行计算引擎(task parallel continuous computational engine Using DAG)
基于spark的数据并行计算引擎(data parallel general purpose batch processing engine)

数据处理模式
(one at a time)一次处理一个事件(消息)
trident: (Micro-batch)一次   处理多个事件
(Micro-batch)一次   处理多个事件

延时
小于一秒
trident(数秒)
数秒)

Thanks for the article!
Could you please explain this point in a bit more detail? "But, it relies on transactions to update state, which is slower and often has to be implemented by the user."
If I want to write my output to a persistent store e.g. redis, then why would it be slower in Storm than in Spark Streaming?

Reply

Replies
  1. Hi Josh, please check out the slide about Storm/Trident here: http://spark-summit.org/wp-content/uploads/2013/10/Spark-Summit-2013-Spark-Streaming.pdf
    If you want exactly-once semantics with Trident, you have to store a per-state transaction ID for each state. I.e., in word-count, for each word, you would store both the count as well as a transaction ID; each key-value pair would look like: (Key:word, Value: count, txid). Before updating the count, you would read in the old transaction ID to make sure it's up to date, and this read causes extra latency. If you are using redis in memory, that might be okay, but if it has to go to disk then that would add noticeable latency to the update. Whereas in Spark, you don't have to store a per-state transaction ID.
    For the details of Trident transactional processing, see http://storm.apache.org/documentation/Trident-state

  2. Hi Xinh, thanks for the explanation. I see, isn't that similar to Spark checkpointing - where it saves states to HDFS every ~10 seconds? or is your point that with Storm it would (by default) persist the state much more frequently than Spark?

  3. Hi Josh, yes, the fault tolerance in Spark involves periodic (~10 second) checkpointing of RDDs. Yes, my point is that with Storm Trident the persistence occurs when each batch is processed, and by default that occurs a lot more than once every 10 seconds. And, in tuning any of these parameters, there's a tradeoff in the frequency of persistence vs. recovery time in the case of failure.

容错
至少一次
trident:精确一次
精确一次
源出处
BackType and Twitter
UCB
实现语言
Clojure scala
API支持
java、python、ruby等
jscala、java、python

平台集成
NA(基于zookeeper)
spark(所以可以统一(或共用)时事处理与历史数据的处理)

产品、支持
Storm has been around for several years and has run in production at Twitter since 2011, as well as at many other companies
Meanwhile, Spark Streaming is a newer project; its only production deployment (that I am aware of) has been at Sharethrough since 2013.

计算理论框架   
Storm is the streaming solution in the Hortonworks Hadoop data platform
Spark Streaming is in both MapR's distribution and Cloudera's Enterprise data platformDatabricks

集群集成,部署方式
依赖zookeeper,standalone,messo
standalone,yarn,messo   

google trend   



bug燃烧图   

https://issues.apache.org/jira/browse/STORM/

https://issues.apache.org/jira/browse/SPARK/
可见spark问题解决比storm要及时得多









spark streaming 与 storm的对比的更多相关文章

  1. Spark Straming,Spark Streaming与Storm的对比分析

    Spark Straming,Spark Streaming与Storm的对比分析 一.大数据实时计算介绍 二.大数据实时计算原理 三.Spark Streaming简介 3.1 SparkStrea ...

  2. Spark Streaming与Storm的对比及使用场景

    Spark Streaming与Storm都可以做实时计算,那么在做技术选型的时候到底应该选择哪个呢?通过下图可以从计算模型.计算延迟.吞吐量.事物.容错性.动态并行度等方方面进行对比. 对比点    ...

  3. Spark Streaming与Storm的对比

  4. Apache 流框架 Flink,Spark Streaming,Storm对比分析(一)

    本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提 ...

  5. Apache 流框架 Flink,Spark Streaming,Storm对比分析(二)

    本文由  网易云发布. 本文内容接上一篇Apache 流框架 Flink,Spark Streaming,Storm对比分析(一) 2.Spark Streaming架构及特性分析 2.1 基本架构 ...

  6. Apache 流框架 Flink,Spark Streaming,Storm对比分析(2)

    此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 2.Spark Streaming架构及特性分析 2.1 基本架构 基于是spark core的spark s ...

  7. spark streaming与storm比较

  8. Apache 流框架 Flink,Spark Streaming,Storm对比分析(1)

    此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是 ...

  9. spark streaming (一)

    实时计算介绍 Spark Streaming, 其实就是一种Spark提供的, 对于大数据, 进行实时计算的一种框架. 它的底层, 其实, 也是基于我们之前讲解的Spark Core的. 基本的计算模 ...

随机推荐

  1. 一步步创建第一个Vue项目

    写在了GitHub https://github.com/TaoPanfeng/vue-cms 1 初始化 创建一个文件夹 vue-cms 在vue-cms目录下创建文件 package.json 在 ...

  2. Winfrom UI 美化 MetroModernUI库应用实例

    使用方式: 选择项目==>右键==>管理NuGet安装包==>输入Metro==> ==>添加选项卡(自定义命名,例如Metrol UI)==>浏览 ==>加 ...

  3. three.js之正投影摄像机与透视投影摄像机的区别

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. Beta冲刺——星期三

    这个作业属于哪个课程 <课程的链接> 这个作业要求在哪里 <作业要求的链接> 团队名称 飞猪们 这个作业的目标 剩余任务预估,分配任务(开发,测试等).按要求提交当天冲刺报告. ...

  5. zencart用sql将某个产品属性值设为只读和默认

    zencart用sql将某个产品属性值设为只读和默认 UPDATE `products_attributes` SET `attributes_display_only` = '1', `attrib ...

  6. 异步消息处理机制相关面试问题-AsyncTask面试问题详解

    什么是AsyncTask: 它本质上是一个封装了线程池和handler的异步框架. AsyncTask的使用方法: 三个参数: 五个方法: AsyncTask的内部原理: AsyncTask的注意事项 ...

  7. Python标准库: turtle--海龟绘图。

    turtle --- 海龟绘图 (点击查看官方文档.) 简介 import turtle # 调用该库.Turtle的实例对象,默认命名为turtle. turtle.forward(10) from ...

  8. Python:用filter函数求素数 (再理解generator)

    目的:更熟悉应用generator. 参考:https://www.liaoxuefeng.com/wiki/1016959663602400/1017404530360000 素数定义: 素数:质数 ...

  9. MyBatis 分页插件PageHelper 后台报错

    今天遇到一个问题,使用MyBatis 分页插件PageHelper 进行排序分页后,能正常返回正确的结果,但后台却一直在报错 net.sf.jsqlparser.parser.ParseExcepti ...

  10. 一道经典JS面试题

    超过80%的候选人对下面这道JS面试题的回答情况连及格都达不到.这究竟是怎样神奇的一道JS面试题?他考察了候选人的哪些能力?对正在读本文的你有什么启示? 不起眼的开始 招聘前端工程师,尤其是中高级前端 ...