CF1009F Dominant Indices——长链剖分优化DP
原题链接
\(EDU\)出一道长链剖分优化\(dp\)裸题?
简化版题意
问你每个点的子树中与它距离为多少的点的数量最多,如果有多解,最小化距离
思路
方法1.
用\(dsu\ on\ tree\)做到\(O(nlogn)\)
方法2.
考虑\(dp\),也就是设\(f[u][d]\)表示以\(u\)为根的子树中有多少个点与它的距离为\(j\),则转移如下:
\(f[u][0]=1\),\(f[u][d]+=f[v][d-1]\)
发现可以直接通过把数组右移直接把一个儿子的信息继承过来,又因为转移是跟深度相关的,那么我们直接把长儿子的信息继承过来就好了,然后暴力合并短儿子的信息
这样的时间复杂度都是\(O(n)\)的,怎么证明?直接继承长儿子的信息通过指针可以做到\(O(1)\),然后每条长链只会在顶端被合并,而长链的长度和是\(O(n)\),于是总复杂度就\(O(n)\)啦
空间复杂度的证明同理
代码如下
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define IINF 0x3f3f3f3f3f3f3f3fLL
#define ull unsigned long long
#define pii pair<int, int>
#define uint unsigned int
#define mii map<int, int>
#define lbd lower_bound
#define ubd upper_bound
#define INF 0x3f3f3f3f
#define vi vector<int>
#define ll long long
#define mp make_pair
#define pb push_back
#define N 1000000
struct Edge {
int next, to;
}e[2*N+5];
int n;
int head[N+5], eid, len[N+5], longson[N+5];
int memory[N+5], ans[N+5];
void addEdge(int from, int to) {
e[++eid].next = head[from];
e[eid].to = to;
head[from] = eid;
}
void dfs1(int u, int fa) {
for(int i = head[u], v; i; i = e[i].next) {
v = e[i].to;
if(v == fa) continue;
dfs1(v, u);
if(len[longson[u]] < len[v]) longson[u] = v;
}
len[u] = len[longson[u]]+1;
}
void dp(int u, int fa, int *f) {
ans[u] = 0;
f[0] = 1;
int *g;
if(longson[u]) {
g = f+1;
dp(longson[u], u, g);
if(g[ans[longson[u]]] > f[ans[u]] || (g[ans[longson[u]]] == f[ans[u]] && ans[longson[u]] < ans[u]))
ans[u] = ans[longson[u]]+1;
}
g = f+len[u];
for(int i = head[u], v; i; i = e[i].next) {
v = e[i].to;
if(v == fa || v == longson[u]) continue;
dp(v, u, g);
for(int j = 1; j <= len[v]; ++j) {
f[j] += g[j-1];
if(f[j] > f[ans[u]] || (f[j] == f[ans[u]] && j < ans[u]))
ans[u] = j;
}
}
}
int main() {
scanf("%d", &n);
for(int i = 1, x, y; i < n; ++i) {
scanf("%d%d", &x, &y);
addEdge(x, y), addEdge(y, x);
}
dfs1(1, 0);
dp(1, 0, memory);
for(int i = 1; i <= n; ++i) printf("%d\n", ans[i]);
return 0;
}
CF1009F Dominant Indices——长链剖分优化DP的更多相关文章
- CF1009F Dominant Indices 长链剖分
题目传送门 https://codeforces.com/contest/1009/problem/F 题解 长链剖分的板子吧. 令 \(dp[x][i]\) 表示 \(x\) 的子树中的深度为 \( ...
- 【CF1009F】Dominant Indices(长链剖分优化DP)
点此看题面 大致题意: 设\(d(x,y)\)表示\(x\)子树内到\(x\)距离为\(y\)的点的个数,对于每个\(x\),求满足\(d(x,y)\)最大的最小的\(y\). 暴力\(DP\) 首先 ...
- 2019.01.19 bzoj3653: 谈笑风生(长链剖分优化dp)
传送门 长链剖分优化dpdpdp水题. 题意简述:给一棵树,mmm次询问,每次给一个点aaa和一个值kkk,询问满足如下条件的三元组(a,b,c)(a,b,c)(a,b,c)的个数. a,b是c的祖先 ...
- 长链剖分优化dp三例题
首先,重链剖分我们有所认识,在dsu on tree和数据结构维护链时我们都用过他的性质. 在这里,我们要介绍一种新的剖分方式,我们求出这个点到子树中的最长链长,这个链长最终从哪个儿子更新而来,那个儿 ...
- Codeforces 1009 F. Dominant Indices(长链剖分/树上启发式合并)
F. Dominant Indices 题意: 给一颗无向树,根为1.对于每个节点,求其子树中,哪个距离下的节点数量最多.数量相同时,取较小的那个距离. 题目: 这类题一般的做法是树上的启发式合并,复 ...
- CF 1009 F Dominant Indices —— 长链剖分+指针
题目:http://codeforces.com/contest/1009/problem/F 也可以用 dsu on tree 的做法,全局记录一个 dep,然后放进堆里,因为字典序要最小,所以再记 ...
- 2018.11.03 NOIP模拟 树(长链剖分优化dp)
传送门 考虑直接推式子不用优化怎么做. 显然每一个二进制位分开计算贡献就行. 即记录fi,jf_{i,j}fi,j表示距离iii这个点不超过jjj的点的每个二进制位的0/10/10/1个数. 但直接 ...
- BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...
- 长链剖分优化树形DP总结
长链剖分 规定若\(x\)为叶结点,则\(len[x]=1\). 否则定义\(preferredchild[x]\)(以下简称\(pc[x]\),称\(pc[x]\)为\(x\)的长儿子)为\(x\) ...
随机推荐
- 《C++ Primer》读书笔记之第15章:面向对象编程
一.面向对象概述 1. 面向对象的三个基本特性 封装.继承和多态. 2. 封装 指把隐藏对象的实现细节,仅对外提供接口,从而达到接口与实现分离的效果.封装的好处:一是提高数据的安全性,用户只能使用对象 ...
- poj1947(树上分组背包)
题目链接:https://vjudge.net/problem/POJ-1947 题意:给定一棵树,求得到一个结点数为p最少删多少条边. 思路: 明显的树形dp,分组背包.用dp[u][j]表示在结点 ...
- Thinking In Java 4th Chap4 控制执行流程
Foreach语法: 例如:float f[]=new float [10]; for(float x:f){/*****/} for(char c:"Afaslkd aslfjala al ...
- [第二季ZYNQ] [南京米联]ZYNQ第二季更新完毕课程共计16节课
ZYNQ第二季更新完毕课程共计16节课全部免费 [第二季ZYNQ] ...
- 第八章 ZYNQ-MIZ701 软硬调试高级技巧
软件和硬件的完美结合才是SOC的优势和长处,那么开发ZYNQ就需要掌握软件和硬件开发的调试技巧,这样才能同时分析软件或者硬件的运行情况,找到问题,最终解决.那么本章将通过一个简单的例子带大家使用v ...
- Python 运算符与数据类型
Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...
- Java通过JDBC连接SQL Server
下载Microsoft JDBC Driver 4.0 for SQL Server 在这里下载:http://www.microsoft.com/zh-cn/download/details.asp ...
- mysql5.7 密码字段名更改
由password更改为authentication_string update user set authentication_string=password("123456") ...
- list 列表 函数的引用
方法 意义 L.index(v [, begin[, end]]) 返回对应元素的索引下标, begin为开始索引,end为结束索引,当 value 不存在时触发ValueError错误 L.inse ...
- 阿里云Ubuntu下tomcat8.5配置SSL证书
环境 阿里云ubuntu(18.04)服务器 阿里云申请的域名 Tomcat8.5.7 jdk1.8 免费型SSL证书 SSL证书申请 登录阿里云的官网,登录后在菜单中选择SSL证书(应用安全) 进入 ...