import pandas as pd
import numpy as np s = pd.Series([1,3,5,6,8],index=list('acefh'))
s.index # 读取行索引
# 输出 Index(['a', 'c', 'e', 'f', 'h'], dtype='object') s.reindex(list('abcdefgh')) # 索引再定义,与元索引相同,值不变,其它变为NaN
s.reindex(list('abcdefgh'),fill_value=0) # 将其它的索引设置默认值0
s.reindex(list('abcdefgh'), method='ffill')
# 其它元Series没有的索引的值对应上一行已有的索引对应值 df = pd.DataFrame(np.random.randn(4,6),index=list('ADFH'),columns=['one','two','three','four','five','six'])
df2 = df.reindex(index=list('ABCDEFGH'))
# DataFrame中再定义行索引,新的索引将默认赋值NaN df.reindex(index=list('ABCDEFGH'),fill_value=0) # DataFrame中为新的索引赋值0
df.loc['A']['one'] = 100 # 将‘A'行’one‘列赋值100 df.reindex(columns=['one','three','five','seven'],fill_value=0) df.reindex(index=list('ABCDEFGH'),method='ffill') # method只对列有效果
# method='ffill',找到上面一行的对应列的值 赋值给新添加的行
# 但是df没有改变 但是df没有改变 但是df没有改变 但是df没有改变 但是df没有改变 df.drop('A') # 默认按行
df.drop(['two','four'],axis=1) #按列
# 但是df没有改变 但是df没有改变 但是df没有改变 但是df没有改变 但是df没有改变 df = pd.DataFrame(np.arange(12).reshape(4,3),index=['one','two','three','four'],columns=list('ABC')) df.apply(lambda x: x.max()-x.min()) # 按列
df.apply(lambda x: x.max()-x.min(), axis=1) # 按行 def min_max(x):
return pd.Series([x.min(),x.max()],index=['min','max']) # 按行
df.apply(min_max, axis=1) df = pd.DataFrame(np.random.randn(4,3),index=['one','two','three','four'],columns=list('ABC')) # formater = lambda x: '%.03f' % x
formater = '{0:0.3f}'.format # 两个结果相同,取3位有效数字 df = pd.DataFrame(np.random.randint(1,10,(4,3)),index=list('ABCD'),columns=['one','two','three']) df.sort_values(by='two',ascending=False) 通过by找到主要排序列对象 ascending=False按从大到小排列 s = pd.Series([3,6,2,6,4]) s.rank(method='average')
# 默认,rank表示列中的值对应的大小排位号(小的数排位靠前)
# df未改变 df未改变 df未改变 df未改变 df未改变 df未改变 df.rank(method='first') # 按列取排位号(小的数排位靠前)
s = pd.Series(list('abbcdabacad'))
s.value_counts() # 列中相应的值出现的次数
s.unique() # 找出列中所有不重复的值
s.isin(['a','c','d']) # 判断列中的值在['a','c','d']是否有相同的值
s.isin(s.unique()) # 判断列中的值在array(['a', 'b', 'c', 'd'])是否有相同的值

pandas数据结构之基础运算笔记的更多相关文章

  1. 读书笔记一、pandas数据结构介绍

    pandas数据结构介绍 主要两种数据结构:Series和DataFrame.   Series   Series是一种类似于一维数组的对象,由一组数据(各种NumPy数据类型)+数据标签(即索引)组 ...

  2. python之pandas学习笔记-pandas数据结构

    pandas数据结构 pandas处理3种数据结构,它们建立在numpy数组之上,所以运行速度很快: 1.系列(Series) 2.数据帧(DataFrame) 3.面板(Panel) 关系: 数据结 ...

  3. Oracle基础学习笔记

    Oracle基础学习笔记 最近找到一份实习工作,有点头疼的是,有阶段性考核,这...,实际想想看,大学期间只学过数据库原理,并没有针对某一数据库管理系统而系统的学习,这正好是一个机会,于是乎用了三天时 ...

  4. 尚学堂JAVA基础学习笔记

    目录 尚学堂JAVA基础学习笔记 写在前面 第1章 JAVA入门 第2章 数据类型和运算符 第3章 控制语句 第4章 Java面向对象基础 1. 面向对象基础 2. 面向对象的内存分析 3. 构造方法 ...

  5. pandas教程1:pandas数据结构入门

    pandas是一个用于进行python科学计算的常用库,包含高级的数据结构和精巧的工具,使得在Python中处理数据非常快速和简单.pandas建造在NumPy之上,它使得以NumPy为中心的应用很容 ...

  6. <数据结构与算法分析>读书笔记--运行时间计算

    有几种方法估计一个程序的运行时间.前面的表是凭经验得到的(可以参考:<数据结构与算法分析>读书笔记--要分析的问题) 如果认为两个程序花费大致相同的时间,要确定哪个程序更快的最好方法很可能 ...

  7. <数据结构与算法分析>读书笔记--函数对象

    关于函数对象,百度百科对它是这样定义的: 重载函数调用操作符的类,其对象常称为函数对象(function object),即它们是行为类似函数的对象.又称仿函数. 听起来确实很难懂,通过搜索我找到一篇 ...

  8. 黑马程序猿————Java基础日常笔记---反射与正則表達式

    ------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- 黑马程序猿----Java基础日常笔记---反射与正則表達式 1.1反射 反射的理解和作用: 首 ...

  9. 嵩天老师的零基础Python笔记:https://www.bilibili.com/video/av13570243/?from=search&seid=15873837810484552531 中的15-23讲

    #coding=gbk#嵩天老师的零基础Python笔记:https://www.bilibili.com/video/av13570243/?from=search&seid=1587383 ...

随机推荐

  1. 让vim更加智能化

    从此,让我的vim更加的智能化,整整用了一个周日,基本是值得的: "新建.c\.cpp\.python\.sh等文件时,使用定义的函数SetTitle,自动插入文件头 func SetTit ...

  2. [mysql] Mysql数据分组GROUP BY 和HAVING,与WHERE组合使用

    理解分组,可以这样:对GROUP BY子句后面跟随的列名进行分组,然后对每一个分组而不是整个表进行操作. 举例:在产品表中,检索每一个供应商提供的商品的数量. mysql> SELECT ven ...

  3. sklearn中的弹性网函数 ElasticNet

    语法:  ElasticNet(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False ...

  4. Java语言发展史

    Java语言发展史 詹姆斯·高斯林(James Gosling)1977年获得了加拿大卡尔加里大学计算机科学学士学位,1983年获得了美国卡内基梅隆大学计算机科学博士学位,毕业后到IBM工作,设计IB ...

  5. 002-创建型-02-抽象工厂模式(Abstract Factory)

    一.概述 抽象工厂模式提供同一个创建一系列相关或相互依赖对象的接口,无须指定它们具体的类 抽象工厂模式是所有形态的工厂模式中最为抽象和最具一般性的一种形态.抽象工厂模式是指当有多个抽象角色时,使用的一 ...

  6. 阶段5 3.微服务项目【学成在线】_day18 用户授权_01-用户授权业务流程分析

    1 用户授权业务流程 用户授权的业务流程如下: 业务流程说明如下: 1.用户认证通过,认证服务向浏览器cookie写入token( 身份令牌) 2.前端携带token请求用户中心服务获取jwt令牌 前 ...

  7. ubuntu 18.04下greenplum安装笔记(二)安装Greenplum的失败的尝试

    之前对Linux环境进行了搭建,现在开始进行Greenplum的正式安装. 下载 进Greenplum的官网:https://greenplum.org/download/ 可以发现,对于ubuntu ...

  8. [CareerCup] Guards in a museum 博物馆的警卫

    A museum was represented by a square matrix that was filled with O, G, and W where O represented ope ...

  9. 【ARTS】01_32_左耳听风-201900617~201900623

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  10. fastJson工具类

    jar:fast.jar 依赖: <!-- fastjson --> <dependency> <groupId>com.alibaba</groupId&g ...