题目链接:戳我

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
#define MAXN 8010
#define mod 1000000007
#define ll long long
int n,m,a[MAXN],flag[MAXN],cnt[MAXN],f[2][MAXN],sum[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y);
if(a[x]){puts("0");return 0;}
if(flag[y]){puts("0");return 0;}
if(y==n&&x!=n){puts("0");return 0;}
if(x==n&&y!=n){puts("0");return 0;}
a[x]=y;flag[y]=1;//a[x]=y表示位置x预定的是y
}
//f[i][j]表示统计到前i位,其中最大的是j的方案数
//根据题目中的排序规则,最大的一定在最右边
for(int i=1;i<=n;++i) cnt[i]=cnt[i-1]+flag[i];
f[0][0]=1;
for(int i=0;i<=n;++i) sum[i]=1;
for(int i=1;i<=n;++i)
{
int now=i&1,pre=now^1;
memset(f[now],0,sizeof(f[now]));
//j一定在第i位
for(int j=i;j<=n;++j)
{
if(!a[i-1])//i-1的位置没有被预定
{
f[now][j]=((f[now][j]+1ll*f[pre][j]*(j-(i-1)-cnt[j-1])%mod)%mod+sum[j-1])%mod;
//乘上的系数是该位可以放哪些值
}
else if(j>a[i-1])//如果i-1的位置被预定了,且j大于i-1位置预定的值
f[now][j]=(f[pre][j]+f[pre][a[i-1]])%mod;
}
sum[i-1]=0;
for(int j=i;j<=n;++j) sum[j]=(sum[j-1]+(flag[j]?0:f[now][j]))%mod;
//sum[j]表示以1...j为最大的值的前缀和
//如果这个位置被预定了,那么就是0,如果没有,就加上这一位的值
if(a[i])//如果这个位置被预定了
{
flag[a[i]]=0;//a[i]这个数没有预定了,以消除后面统计前缀和的影响
for(int j=a[i];j<=n;++j) --cnt[j];//cnt[j]表示前j大的数已经被放了几个了,同上
}
}
printf("%d\n",f[n&1][n]);
return 0;
}

noi.ac #528 神树和排列的更多相关文章

  1. noi.ac #531 神树和物品

    题目链接:戳我 决策单调性 (蒟蒻终于会写决策单调性啦!考试全场切这题就我不会啊嘤) (证明?不会啊,自己打表看QAQ) 44pts \(O(n^2)\)代码: #include<iostrea ...

  2. noi.ac #529 神树的矩阵

    题目链接:戳我 当 \(max(n, m) \ge 3\) 时,可以如下构造: 考虑下面这样三个矩阵,红 + 蓝 − 绿得到的矩阵是一个第一行和最后一行全是 1,其他地方全是 0 的矩阵. 那么如果需 ...

  3. noi.ac #525 神树的权值

    mcfx神仙的题qwq 题目链接:戳我 首先,我们知道30%的分还是挺好做的 直接枚举根,然后dfs一遍以\(O(n)\)的时间复杂度求出来有多少神仙点 代码如下: #include<iostr ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)

    题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...

  6. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  7. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  8. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  9. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

随机推荐

  1. Elastic Search中Query String常见语法

    1 搜索所有数据timeout参数:是超时时长定义.代表每个节点上的每个shard执行搜索时最多耗时多久.不会影响响应的正常返回.只会影响返回响应中的数据数量.如:索引a中,有10亿数据.存储在5个s ...

  2. JavaScript的几种循环方式

    JavaScript提供了许多通过LOOPS迭代的方法.本教程解释了现代JAVASCRIPT中各种各样的循环可能性 目录: for forEach do...while while for...in ...

  3. Spring实战(八)bean装配的运行时值注入——属性占位符和SpEL

    前面涉及到依赖注入,我们一般哦都是将一个bean引用注入到另一个bean 的属性or构造器参数or Setter参数,即将为一个对象与另一个对象进行关联. bean装配的另一个方面是指将一个值注入到b ...

  4. dev gridview表格按钮

    固定列的位置 添加按钮控件位置,使用buttonEdit 添加按钮 按钮属性设置 按钮设置后的效果 //注册按钮事件 this.ribtndata.ButtonClick += new DevExpr ...

  5. 【vue】computed 和 watch

    计算属性:computed  监听多个变量且变量是在vue实例中(依赖某个变量,变量发生改变就会触发) 侦听器:   watch        监听一个变量的变化 使用场景:watch(异步场景)  ...

  6. java启动server时报端口无效解决方法

    今天在Java里配置Tomcat服务器,启动时出现如下图报错信息 The server cannot be started because one or more of the ports are i ...

  7. spring配置文件定时器

    在实际工作中,经常需要使用到定时任务,很多地方都会需要这种功能,比如做数据备份.同步等操作. 今天终于抽出时间总结了一下,写一个小例子: 基本使用: spring的定时任务使用起来十分方便,只需要两步 ...

  8. location(重定向,跳转到其他网页)

    <?php header('Location : https://www.baidu.com'); 这里是在响应头中添加一个 location 的头信息 客户端浏览器在接收到这个头信息过后会自动 ...

  9. 微信小程序iOS下拉白屏晃动,坑坑坑

    感觉ios的小程序每个页面都可以下拉出现白屏 有时页面带有滑动的属性会跟着晃动,体验不是很好 解决办法: 先禁止页面下拉 <config> { navigationBarTitleText ...

  10. IIS 6.0 PUT上传 任意文件创建漏洞

    IIS 6.0 PUT上传 任意文件创建漏洞 require 1.IIS Server在Web服务扩展中开启了WebDAV. 2.IIS配置了可以写入的权限,包括网站 1.根目录 2.子文件夹 3.i ...