[bzoj 3566][SHOI 2014]概率充电器
传送门
Description
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
进入充电状态的元件个数的期望是多少呢?
Solution
\[E=\sum f_i\ \ \ 其中f_i表示节点i通电的概率
\]那么怎么求\(f_i\)呢?显然,一个点通电有三种情况:来自i的父亲节点、来自i的某个儿子节点、来自i自己
首先,要了解的是:
\[P(A\cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A)*P(B)
\]
- 只考虑自己给自己充电的情况:\(f_i=q_i\),也就是它直接通电的可能性
- 只考虑自己给自己充电和儿子给自己充电两种情况:考虑\(dfs\),回溯的时候用儿子\(v\)更新父亲\(u\),儿子给父亲充电的概率是\(从儿子充电p_{从儿子充电}=p(u,v)*f_v\),然后\(从儿子充电从儿子充电f_u=f_u+p_{从儿子充电}-f_u*p_{从儿子充电}\)
- 考虑三种情况,\(dfs\)的时候从上到下用父亲节点\(u\)更新儿子节点\(v\),但是,我们要如何求出父亲给儿子充电的概率呢?显然是父亲得到电的概率*\(p(u,v)\),而这里父亲得到电的概率应该不包含从\(v\)得到电的情况。
不包含\(v\)的情况怎么算呢,考虑逆推回去。
因为:\(P(A\cup B)=P(A)+P(B)-P(A)*P(B)\)
所以:\(P(A)=\frac{P(A \cup B)}{1-P(B)}\)
有第二步可知,\(P(B)=p(u,v)*f_v\),\(P(A)=f_u\)
如果\(P(B)=1\)怎么办呢?这是后是算不出\(P(A)\)的,但是这个时候显然\(f_v=1\),那么他已经不需要再计算了
这样,\(从父亲充电p_{从父亲充电}=P(A)\)
所以就可以更新\(f_v\)辣,\(从父亲充电从父亲充电f_v=f_v+p_{从父亲充电}-f_v*p_{从父亲充电}\)
如何判断\(f_v=1\)?用\(abs(f_v-1)<eps\)即可
Code
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define MN 500005
#define eps (1e-8)
#define db double
#define abs(x) ((x)>0?(x):-(x))
struct edge{int to,p,nex;}e[MN<<1];
int en,hr[MN];
inline void ins(int f,int t,int p)
{
e[++en]=(edge){t,p,hr[f]};hr[f]=en;
e[++en]=(edge){f,p,hr[t]};hr[t]=en;
}
double f[MN],ans;
int n,a,b;
void dfs1(int x=1,int fa=0)
{
register int i;
for(i=hr[x];i;i=e[i].nex)if(fa^e[i].to)
dfs1(e[i].to,x),f[x]=f[x]+f[e[i].to]*((db)e[i].p/100.)-f[e[i].to]*f[x]*((db)e[i].p/100.);
}
void dfs2(int x=1,int fa=0)
{
register int i;
for(i=hr[x];i;i=e[i].nex)if(fa^e[i].to)
{
if(abs(1.-f[e[i].to])>eps)
{
double down=(f[x]-f[e[i].to]*((db)e[i].p/100.))/(1-f[e[i].to]*((db)e[i].p/100.))*((db)e[i].p/100.);
f[e[i].to]=f[e[i].to]+down-f[e[i].to]*down;
}
dfs2(e[i].to,x);
}
}
int main()
{
n=read();
register int i,x,y;
for(i=1;i<n;++i) x=read(),y=read(),ins(x,y,read());
for(i=1;i<=n;++i) f[i]=read()/100.;
dfs1();dfs2();
for(i=1;i<=n;++i) ans+=f[i];
printf("%.6lf",ans);
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
[bzoj 3566][SHOI 2014]概率充电器的更多相关文章
- [ SHOI 2014 ] 概率充电器
\(\\\) \(Description\) 一个含\(N\)个元器件的树形结构充电器,第\(i\)个元器件有\(P_i\)的概率直接从外部被充电,连接\(i,j\)的边有\(P_{i,j}\)的概率 ...
- 解题:SHOI 2014 概率充电器
题面 显然就是在求概率,因为期望乘的全是1....然后就推推推啊 设$fgg[i]$表示这个点父亲没给他充上电的概率,$sgg[i]$表示这个点子树(和它自己)没给他充上电的概率,然后这个点没充上电的 ...
- Luogu 4284 [SHOI2014]概率充电器
BZOJ 3566 树形$dp$ + 概率期望. 每一个点的贡献都是$1$,在本题中期望就等于概率. 发现每一个点要通电会在下面三件事中至少发生一件: 1.它自己通电了. 2.它的父亲给它通电了. 3 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- bzoj 3566: [SHOI2014]概率充电器
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- ●BZOJ 3566 [SHOI2014]概率充电器
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...
- 【BZOJ】3566: [SHOI2014]概率充电器
[算法]树型DP+期望DP [题意]一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态? [题解]引用自:[BZOJ3566][SHOI2014]概率充电器 树 ...
随机推荐
- Unity_如何判断应用设备内存小于1G(内容可定制为根据机器配置进行不同LOD)
直接上脚本,需要用的时候在需要的地方调用就好. 如: //获取设别的最大内存,作为判断LOD等级和决定1G以下设备不能进游戏 #if UNITY_ANDROID && !UNITY_E ...
- 解读生命密码的基本手段 ——DNA测序技术的前世今生
解读生命密码的基本手段 ——DNA测序技术的前世今生 任鲁风 于军 (中国科学院基因组科学及信息重点实验室,北京基因组研究所) DNA(脱氧核糖核酸)和RNA(核糖核酸)是生命体的两种最基本组成物质 ...
- h5 点击ios键盘完成 出现键盘大小的白块
document.addEventListener('focusout', function (e) { window.scrollTo() }) 源文件链接 https://blog.csdn.ne ...
- EntityFramework进阶(四)- 实现批量新增
本系列原创博客代码已在EntityFramework6.0.0测试通过,转载请标明出处 我们可以结合Ado.Net的SqlBulkCopy实现SqlServer数据库的批量新增,其他类型的数据库的批量 ...
- Oracle数据库账户口令复杂度-等保测评之身份鉴别
1. 默认情况下数据库没有启用密码验证函数功能,可通过下面sql查询 SQL> select limit from dba_profiles where RESOURCE_NAME='P ...
- Ubuntu apt-get锁定问题
- 越狱后cydia无法联网
0x:卸载 cydia installer 1x:卸载后重启手机 2x:再次h3lix
- Eclipse安装zookeeper监控插件
1.在 Eclipse 菜单打开Help -> Install New Software…2.添加 url http://www.massedynamic.org/eclipse/updates ...
- IntelliJ IDEA如何默认使用阿里云的Maven仓库
点击IntelliJ IDEA的config中的setting选项 在<mirrors>节点中加上一个子节点,然后保存即可: <mirror> <id>alimav ...
- JDK源码那些事儿之并发ConcurrentHashMap下篇
上一篇文章已经就ConcurrentHashMap进行了部分说明,介绍了其中涉及的常量和变量的含义,有些部分需要结合方法源码来理解,今天这篇文章就继续讲解并发ConcurrentHashMap 前言 ...