Problem Description
When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.
There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:

(1) Mark a vertex in the graph.

(2) Find the shortest-path between two vertices only through marked vertices.

For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.

Could you also solve the shortest-path problem?

 
Input
The input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000; and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y), and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There is a blank line between two consecutive test cases.

End of input is indicated by a line containing N = M = Q = 0.

 
Output
Start each test case with "Case #:" on a single line, where # is the case number starting from 1.

For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.

For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.

There is a blank line between two consecutive test cases.

 
Sample Input
5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
 
Sample Output
Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
 
这道题要用floyd过的话关键就看对于floyd的理解了,因为只有标记的点可以走,为了节省时间,我们可以再新标记点的时候以那点为中转点进行一次floyd,这就避免了n^3的复杂度
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; const int inf = 999999999; int n,m,k;
int map[305][305];
int hash[305]; void floyd(int k)
{
int i,j;
for(i = 0; i<n; i++)
for(j = 0; j<n; j++)
if(map[i][j]>map[i][k]+map[k][j])
map[i][j] = map[i][k]+map[k][j];
} int main()
{
int x,y,c,i,j,cas = 1;
while(~scanf("%d%d%d",&n,&m,&k),n+m+k)
{
memset(hash,0,sizeof(hash));
for(i = 0; i<=n; i++)
{
for(j = 0; j<=n; j++)
map[i][j] = inf;
map[i][i] = 0;
}
while(m--)
{
scanf("%d%d%d",&x,&y,&c);
if(c<map[x][y])
map[x][y] = c;
}
if(cas!=1)
printf("\n");
printf("Case %d:\n",cas++);
while(k--)
{
scanf("%d",&c);
if(c)
{
scanf("%d%d",&x,&y);
if(hash[x] && hash[y])
{
if(map[x][y]!=inf)
printf("%d\n",map[x][y]);
else
printf("No such path\n");
}
else
printf("ERROR! At path %d to %d\n",x,y);
}
else
{
scanf("%d",&x);
if(hash[x])
printf("ERROR! At point %d\n",x);
else
{
hash[x] = 1;
floyd(x);//以新加入的点为中转点去更新最短路
}
}
}
} return 0;
}

HDU3631:Shortest Path(Floyd)的更多相关文章

  1. HDU - 3631 Shortest Path(Floyd最短路)

    Shortest Path Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u SubmitStat ...

  2. [ZOJ2760]How Many Shortest Path(floyd+最大流)

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给你一个一个n*n(n<=100)的有向图,问你从s到 ...

  3. [LeetCode] 847. Shortest Path Visiting All Nodes 访问所有结点的最短路径

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  4. hdu-----(2807)The Shortest Path(矩阵+Floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  6. 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  7. hdu 2807 The Shortest Path(矩阵+floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. 74(2B)Shortest Path (hdu 5636) (Floyd)

    Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. HDU4725:The Shortest Path in Nya Graph(最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. Android开源项目 Universal imageloader 源码研究之项目框架

    Universal imageloader 的代码并不复杂 重点是缓存,线程池任务 下面都用UML图进行了绘制 基本使用流程就是 初始化配置,设置Options参数,最后Dispaly提交下载 pub ...

  2. Delphi ComboBox的属性和事件、及几个鼠标事件的触发

    临时做了两个小的测试程序,为了彻底弄清楚combobox的OnClick.OnChange.OnDropDown.OnCloseUp.OnSelect事件的触发及其先后顺序. 另附常用鼠标事件的触发情 ...

  3. ReetrantLock Synchronized Atomic的性能对比

    之前看到了一篇帖子关于Lock和Synchronized的性能,写的是Lock比Synchronized的性能要好,可是,我试了下,结果却不是这样的,我所使用的JDK的版本是1.7,可能跟原帖作者用的 ...

  4. jsp <%! %> 与 <% %> 区别

    转自huangqiqing123.iteye.com/blog/1922014 <body> <%! //1.可定义方法 public String outMethod(){ ret ...

  5. mktime性能问题

    #include <time.h> int main() { for (int i = 0; i < 100000; ++i) { struct tm tm = {}; tm.tm_ ...

  6. 按钮制作技巧(css精灵效果)-高级版

    [转自己以前的文章] 无论用什么语言,大家敲程序的时候多多少少都会遇到做按钮的时候.今天分享一个之前学做按钮的技巧,有人叫做css精灵效果. 通常做按钮的思路都用附图中的第一种:两张图片交互的形式,让 ...

  7. [HTML5 Canvas学习] 基础知识

    HTML5 canvas元素通过脚本语言(通常是Javascript) 绘制图形, 它仅仅是一个绘图环境,需要通过getContext('2d')方法获得绘图环境对象,使用绘图环境对象在canvas元 ...

  8. PHP开发套件

    Windows系统下开发 环境配置: PHPstudy----立即下载 开发工具: PHPstorm----立即下载 引用一个注册服务器地址:潘田--phpstorm 2016.1注册码 当然推荐大家 ...

  9. JQuery 左右拖动插件

    js文件:http://hokaccha.github.io/js-flipsnap/js/flipsnap.js 官网: http://hokaccha.github.io/js-flipsnap/

  10. MVC视图中Html.DropDownList()辅助方法的使用

    我们先在控制器中准备好一个SelectList类型,然后通过ViewBag.List传入视图中.SelectList类型是ASP.NET MVC专门为列表有关的HTML辅助方法提供选项的,例如,Htm ...