Problem Description
When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.
There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:

(1) Mark a vertex in the graph.

(2) Find the shortest-path between two vertices only through marked vertices.

For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.

Could you also solve the shortest-path problem?

 
Input
The input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000; and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y), and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There is a blank line between two consecutive test cases.

End of input is indicated by a line containing N = M = Q = 0.

 
Output
Start each test case with "Case #:" on a single line, where # is the case number starting from 1.

For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.

For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.

There is a blank line between two consecutive test cases.

 
Sample Input
5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
 
Sample Output
Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
 
这道题要用floyd过的话关键就看对于floyd的理解了,因为只有标记的点可以走,为了节省时间,我们可以再新标记点的时候以那点为中转点进行一次floyd,这就避免了n^3的复杂度
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; const int inf = 999999999; int n,m,k;
int map[305][305];
int hash[305]; void floyd(int k)
{
int i,j;
for(i = 0; i<n; i++)
for(j = 0; j<n; j++)
if(map[i][j]>map[i][k]+map[k][j])
map[i][j] = map[i][k]+map[k][j];
} int main()
{
int x,y,c,i,j,cas = 1;
while(~scanf("%d%d%d",&n,&m,&k),n+m+k)
{
memset(hash,0,sizeof(hash));
for(i = 0; i<=n; i++)
{
for(j = 0; j<=n; j++)
map[i][j] = inf;
map[i][i] = 0;
}
while(m--)
{
scanf("%d%d%d",&x,&y,&c);
if(c<map[x][y])
map[x][y] = c;
}
if(cas!=1)
printf("\n");
printf("Case %d:\n",cas++);
while(k--)
{
scanf("%d",&c);
if(c)
{
scanf("%d%d",&x,&y);
if(hash[x] && hash[y])
{
if(map[x][y]!=inf)
printf("%d\n",map[x][y]);
else
printf("No such path\n");
}
else
printf("ERROR! At path %d to %d\n",x,y);
}
else
{
scanf("%d",&x);
if(hash[x])
printf("ERROR! At point %d\n",x);
else
{
hash[x] = 1;
floyd(x);//以新加入的点为中转点去更新最短路
}
}
}
} return 0;
}

HDU3631:Shortest Path(Floyd)的更多相关文章

  1. HDU - 3631 Shortest Path(Floyd最短路)

    Shortest Path Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u SubmitStat ...

  2. [ZOJ2760]How Many Shortest Path(floyd+最大流)

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给你一个一个n*n(n<=100)的有向图,问你从s到 ...

  3. [LeetCode] 847. Shortest Path Visiting All Nodes 访问所有结点的最短路径

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  4. hdu-----(2807)The Shortest Path(矩阵+Floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  6. 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  7. hdu 2807 The Shortest Path(矩阵+floyd)

    The Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. 74(2B)Shortest Path (hdu 5636) (Floyd)

    Shortest Path Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. HDU4725:The Shortest Path in Nya Graph(最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. js异步的理解---千呼万唤始出来啊!

    编译完成后(先分配给变量空间和function(){}命名的函数,var = function(){}这种函数也仅仅只是分配了个空间,还没有赋值个函数给他!),调用了若不是undefined就执行, ...

  2. css.day02.eg

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. DNX概述

    1. 什么是.NET执行环境 ? .NET Execution Environment(DNX) 是一个SDK 和运行时环境,它包含所有的你需要创建和运行.net应用程序的组件.它提供一个主机进程,C ...

  4. C# Wpf异步修改UI,多线程修改UI(二)

    1.使用定时器异步修改 这是相对比较简单的方法 在Wpf中定时器使用DiapatcherTimer,不使用Timer原因: 在一个应用程序中,Timer会重复生成time事件,而DispatcherT ...

  5. ViewPager 嵌套Listview 让Listview响应 ViewPager 左右滑事件

    一段拦截判断而已.   之前一直误解了一个拦截的描述.导致搞了半天. 结论: onInterceptTouchEvent 返回true,就由本身View的onTouchEvent进行事件消费. /** ...

  6. Asp.net 事务处理

    事务处理是在数据处理时经常遇到的问题,经常用到的方法有以下三种总结整理如下:方法1:直接写入到sql 中在存储过程中使用 BEGIN TRANS, COMMIT TRANS, ROLLBACK TRA ...

  7. PT与PX,em(%)区别

    字体大小的设置单位,常用的有2种:px.pt.这两个有什么区别呢?先搞清基本概念:px就是表示pixel,像素,是屏幕上显示数据的最基本的点:pt就是point,是印刷行业常用单位,等于1/72英寸. ...

  8. UIBarButtonItem-添加自定义Left或者Right按钮 <总结>

    为UINavigationController添加UINavigationItem   1.添加返回导航按钮backBarButtonItem   1.用系统自带的返回按钮 UIBarButtonIt ...

  9. [转]Delphi 控件属性和事件

    常用[属性] Action:该属性是与组件关联的行为,允许应用程序集中响应用户命令 Anchors:与组件连接的窗体的位置点 Align:确定组件的对齐方式 AutoSize:确定组件是否自动调整其大 ...

  10. @Index用法——javax.persistence.Index

    package com.springup.utiku.model; import java.io.Serializable; import javax.persistence.Entity; impo ...