奶牛集会

Description

约翰家的N头奶牛每年都会参加“哞哞大会” 。哞哞大会是世界奶牛界的盛事。集会上 的活动很多,比如堆干草,跨栅栏,摸牛仔的屁股等等。当然,哞哞大叫肯定也包括在内。 奶牛们的叫声很大,很多奶牛在参加多年活动之后,实际上已经失去了一部分的听力。

奶牛们已经站在了一条直线上,i号奶牛的坐标为Xi,她只能听到大于Vi的声音。每头奶 牛的位置坐标都是唯一的。

如果i号和j号奶牛想对话,则他们使用的音量为max {Vi, Vj} × |Xi −Xj|

N头奶牛可以组合成N(N − 1)/2对奶牛,假设每对奶牛都使用最小的音量在对话,请计 算所有奶牛产生的总音量是多少。

Input Format

第一行:单个整数:N,1 ≤ N ≤ 20000

第二行到第N + 1行:每行有两个用空格分开的整数,Vi和Xi,1 ≤ Vi ≤ 20000, 1 ≤ Xi ≤ 20000

Output Format

第一行:单个整数,表示最小音量之和

----------------------------------------------------------

正解=线段树(其实用树状数组也可以)

注意到max{vi,vj}中,显然只有大的才有贡献

将 vi 从小到大排序一一进树:

设当前做到 i

先统计当前线段树中比xi大的个数num1及和sum1,ans+=vi*(sum1-num1*xi)

再统计当前线段树中比xi小的个数num2及和sum2,ans+=vi*(num2*xi-sum2)

将 xi 插入线段树

Ps.好像很都存在两个相对大小变量的题,按其中一个变量排序后,题目都会变得很愉悦~

代码如下:

 #include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
#include<iostream>
#define INF 9999999
#define LL long long
using namespace std;
struct Point{
int x;
long long v;
}a[];
bool cmp(const Point&X,const Point&Y){
return X.v<Y.v;
}
int Min=INF,Max=-INF;
int L,R,o,n;
long long sum[],num[];
long long now,ans;
long long query(int root,int l,int r){
if(!num[root]) return ;
if(L<=l&&r<=R)
return sum[root]-num[root]*now;
int mid=(l+r)>>;
long long t=;
if(mid>=L) t+=query(root<< ,l ,mid);
if(mid<R) t+=query(root<<|,mid+,r);
return t;
}
void insert(int root,int l,int r,int p){
sum[root]+=p;
num[root]++;
if(l==r) return ;
int mid=(l+r)>>;
if(mid>=p) insert(root<<,l,mid,p);
else insert(root<<|,mid+,r,p);
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld%d",&a[i].v,&a[i].x);
Min=min(a[i].x,Min);
Max=max(a[i].x,Max);
}
sort(a+,a++n,cmp);
LL T=;
for(int i=;i<=n;i++){
now=a[i].x;
L=a[i].x ; R=Max;
ans+=a[i].v*query(,Min,Max);
L=Min ; R=a[i].x;
ans-=a[i].v*query(,Min,Max);
insert(,Min,Max,a[i].x);
}
printf("%lld",ans);
}

-----------------------------------------------------------------------------------

奶牛抗议

Description

约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动。第i头奶牛的理智度 为Ai,Ai可能是负数。约翰希望奶牛在抗议时保持理性,为此,他打算将所有的奶牛隔离成 若干个小组,每个小组内的奶牛的理智度总和都要大于零。由于奶牛是按直线排列的,所以 一个小组内的奶牛位置必须是连续的。

请帮助约翰计算一下,存在多少种不同的分组的方案。由于答案可能很大,只要输出答 案除以1,000,000,009的余数即可。

Input Format

第一行:单个整数:N,1 ≤ N ≤ 10^6

第二行到N + 1行:在第i + 1行有一个整数:Ai,表示第i头奶牛的理智度,−10^5 ≤ Ai ≤ 10^5

Output Format

第一行:单个整数,表示分组方案数除以1,000,000,009的余数

--------------------------------------------------------------------------------------------------

正解=离散化+树状数组,

和上一题有异曲同工之妙~

设f[i] 为到第 i 只奶牛有几种分组,

设sum[i]为奶牛的前缀和

显然 f[i]= ∑f[j](sum[i]-sum[j]>=0)

注意到条件可以转化为 sum[i]>=sum[j],

f[i]=在 i 前 sum[j] 小于 sum[j] 的 f[i] 的和

可以用树状数组求和(由于只有单点修改,用树状数组比较方便 >_<)

sum中显然有许多无用间隔,离散之,

代码如下:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<iostream>
#define INF 999999999999
#define LL long long
#define N 1000002
#define key 1000000009
//using namespace std ;
struct Cow{
LL sum;
int p;
}a[N];
bool cmp(const Cow &x,const Cow &y){
return x.sum<y.sum;
}
int L,R,P,n,p[N];
LL sum[N];
int lowbit(int x){
return x&(-x);
}
void update(int x,LL val){
while(x<=n){
sum[x]=(sum[x]+val)%key;
x+=lowbit(x);
}
}
LL cal(int x){
LL temp=;
while(x){
temp=(temp+sum[x])%key;
x-=lowbit(x);
}
return temp;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
LL val;
scanf("%I64d",&val);
a[i].sum=a[i-].sum+val;
a[i].p=i;
}
a[n+].sum=;
a[n+].p=n+;
std :: sort(a+,a+n+,cmp);
int t=;
for(int i=;i<=n+;i++){
if(i==||a[i].sum!=a[i-].sum) ++t;
p[a[i].p]=t;
}
update(p[n+],);
LL temp=;
for(int i=;i<=n;i++){
temp=cal(p[i]);
update(p[i],temp);
}
printf("%I64d",temp);
}

usaco 奶牛集会 && 奶牛抗议的更多相关文章

  1. 洛谷 P2345 奶牛集会 解题报告

    P2345 奶牛集会 题目背景 MooFest, 2004 Open 题目描述 约翰的N 头奶牛每年都会参加"哞哞大会".哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨 ...

  2. AC日记——奶牛集会 洛谷 P2345

    奶牛集会 思路: 把奶牛按照v排序: 然后,每次都把奶牛放入一个集合s: 因为奶牛已经排序: 所以,每次第i次放入奶牛起作用的v就是vi: 每次ans+=(xi*sum-sumxl)*vi+(sumx ...

  3. luogu P2345 奶牛集会

    二次联通门 : luogu P2345 奶牛集会 /* luogu P2345 奶牛集会 权值线段树 以坐标为下标, 坐标为值建立线段树 对奶牛按听力由小到大排序 对于要查的牛 每次第i次放入奶牛起作 ...

  4. [USACO] 2004 Open MooFest 奶牛集会

    题目背景 MooFest, 2004 Open 题目描述 约翰的N 头奶牛每年都会参加"哞哞大会".哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅栏,摸牛仔的屁股等等 ...

  5. 洛谷P2345 奶牛集会

    题目背景 MooFest, 2004 Open 题目描述 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅栏,摸牛仔的屁股等等.它们参加活动时会聚 ...

  6. 洛谷 P2345 奶牛集会

    https://www.luogu.org/problem/show?pid=2345 题目描述 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅 ...

  7. 【树状数组】【P2345】 奶牛集会

    传送门 Description 约翰的\(N\)头奶牛每年都会参加"哞哞大会".哞哞大会是奶牛界的盛事.集会上的活动很多,比如堆干草,跨栅栏,摸牛仔的屁股等等.它们参加活动时会聚在 ...

  8. p2345 奶牛集会

    传送门 题目 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅栏,摸牛仔的屁股等等.它们参加活动时会聚在一起,第i 头奶牛的坐标为Xi,没有两头奶 ...

  9. P2345 奶牛集会andP2657 低头一族

    做法是一样的 题目背景 MooFest, Open 题目描述 约翰的N 头奶牛每年都会参加“哞哞大会”.哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨栅栏,摸牛仔的屁股等等.它们参加活动时 ...

随机推荐

  1. 无刷新删除 Ajax,JQuery

    1.数据库用上面的,增加一个 DeleteById 的SQL方法 delete from T_Posts where Id = @Original_Id 2.设置处理页面 delete.ashx pu ...

  2. Linux 内核学习的经典书籍及途径

    from:http://www.zhihu.com/question/19606660 知乎 Linux 内核学习的经典书籍及途径?修改 修改 写补充说明 举报   添加评论 分享 • 邀请回答   ...

  3. ubuntu 下安装 apache php mysql

    ubuntu 安装 apache+php+mysql1.打开终端,输入“sudo apt-get install apache2”,回车;(安装apache2.0或2.x新版本,系统会自动查找新的版本 ...

  4. 简单Linq笔记

    Linq是.net 3.5才引入的 要引入命名空间System.Linq. Linq  to XML要引入System.Xml.Linq Linq to ADO.NET要引入System.Data.L ...

  5. C# DES

    using System; //这个是使用DES的基础 using System.Security.Cryptography; //这个是处理文字编码的前提 using System.Text; // ...

  6. JavaScript学习总结【12】、JS AJAX应用

    1.AJAX 简介 AJAX(音译为:阿贾克斯) = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML),是指一种创建交互式网页应用的网页开发技 ...

  7. 一分钟搭建Webpack+react+es6框架

    最近react刷屏的厉害,而随着它一起走进我们视野的还有webpack,webpack只是个工具,为什么如此火呢?因为简单好了不废话.   直接进入正题: 打开命令行工具: npm install - ...

  8. dedecms插件开发教程

    这是一个很简单插件实例,通过此插件,你可以知道怎么样开发一个插件,它结构是怎么设置的,数据库,后台等.文件结构:enroll.php 文件在 plus文件下enroll.htm文件在templets/ ...

  9. windows下Apache配置SSL安全连接

    什么是SSL? SSL(Secure Socket Layer): 是为Http传输提供安全的协议,通过证书认证来确保客户端和网站服务器之间的数据是安全.Open SSL下载地址:http://www ...

  10. POJ 3026 Borg Maze bfs+Kruskal

    题目链接:http://poj.org/problem?id=3026 感觉英语比题目本身难,其实就是个最小生成树,不过要先bfs算出任意两点的权值. #include <stdio.h> ...