额、、失误、、

LCS是Longest Common Subsequence的缩写,即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

DP、O(n^2)解法:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
#define N 1010 int p,q;
int a[N];
int b[N];
int dp[N][N]; void solve()
{
int i,j;
memset(dp,,sizeof(dp));
for(i=;i<=p;i++)
{
for(j=;j<=q;j++)
{
if(a[i]==b[j])
{
dp[i][j]=dp[i-][j-]+;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
}
cout<<dp[p][q]<<endl;
}
int main()
{
int i;
while(scanf("%d%d",&p,&q)!=EOF)
{
for(i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
solve();
}
return ;
}

O(nlogn)解法:

参考http://www.cs.ucf.edu/courses/cap5937/fall2004/Longest%20common%20subsequence.pdf

最长公共子序列 的 nlogn 的算法本质是 将该问题转化成 最长增序列(LIS),因为 LIS 可以用nlogn实现,所以求LCS的时间复杂度降低为 nlogn。

转化:将LCS问题转化成LIS问题。

               假设有两个序列 s1[ 1~6 ] = { a, b, c , a, d, c }, s2[ 1~7 ] = { c, a, b, e, d, a, b }。

记录s1中每个元素在s2中出现的位置, 再将位置按降序排列, 则上面的例子可表示为:

loc( a)= { 6, 2 }, loc( b ) = { 7, 3 }, loc( c ) = { 1 }, loc( d ) = { 5 }。

将s1中每个元素的位置按s1中元素的顺序排列成一个序列s3 = { 6, 2, 7, 3, 1, 6, 2, 5, 1 }。

在对s3求LIS得到的值即为求LCS的答案。(这点我也只是大致理解,读者可以自己理解甚至证明。)

上面一段话转载自:http://blog.csdn.net/non_cease/article/details/6918848

1、当无重复元素时:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 1010 int len;
int p,q;
int a[N];
int b[N];
int dp[N]; void convert()
{
int i,hash[N]={};
for(i=;i<=p;i++)
{
hash[a[i]]=i;
}
for(i=;i<=q;i++)
{
b[i]=hash[b[i]];
}
}
int up_bound(int k)
{
int l=,r=len+;
while(l<r)
{
int m=(l+r)>>;
if(dp[m]<=k) l=m+;
else r=m;
}
return l;
}
void solve()
{
len=;
dp[]=-0x7ffffff;
for(int i=;i<=q;i++)
{
if(!b[i]) continue;
if(b[i]>dp[len]) dp[++len]=b[i];
else
{
int pos=up_bound(b[i]);
dp[pos]=b[i];
}
}
printf("%d\n",len);
}
int main()
{
while(scanf("%d%d",&p,&q)!=EOF)
{
for(int i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
convert();
solve();
}
return ;
}

2、当有重复元素时:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define N 10010 int n;
int p,q;
int len;
int a[N];
int b[N];
int s[N];
int dp[N]; void convert()
{
vector<int> v[N];
for(int i=;i<=p;i++)
{
v[a[i]].push_back(i);
}
n=;
for(int i=;i<=q;i++)
{
for(int j=v[b[i]].size()-;j>=;j--)
{
s[++n]=v[b[i]][j];
}
}
}
int up_bound(int k)
{
int l=,r=len+;
while(l<r)
{
int m=(l+r)>>;
if(dp[m]<=k) l=m+;
else r=m;
}
return l;
} void solve()
{
len=;
dp[]=-0x7fffffff;
for(int i=;i<=n;i++)
{
if(s[i]>dp[len]) dp[++len]=s[i];
else
{
int pos=up_bound(s[i]-);
dp[pos]=s[i];
}
}
printf("%d\n",len);
}
int main()
{
while(scanf("%d%d",&p,&q)!=EOF)
{
for(int i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
convert();
solve();
}
return ;
}

[DP] LCS小结的更多相关文章

  1. UVA.10192 Vacation (DP LCS)

    UVA.10192 Vacation (DP LCS) 题意分析 某人要指定旅游路线,父母分别给出了一系列城市的旅游顺序,求满足父母建议的最大的城市数量是多少. 对于父母的建议分别作为2个子串,对其做 ...

  2. UVA.10066 The Twin Towers (DP LCS)

    UVA.10066 The Twin Towers (DP LCS) 题意分析 有2座塔,分别由不同长度的石块组成.现在要求移走一些石块,使得这2座塔的高度相同,求高度最大是多少. 问题的实质可以转化 ...

  3. UVA-1625-Color Length(DP LCS变形)

    Color Length(UVA-1625)(DP LCS变形) 题目大意 输入两个长度分别为n,m(<5000)的颜色序列.要求按顺序合成同一个序列,即每次可以把一个序列开头的颜色放到新序列的 ...

  4. 插头$DP$学习小结

    插头\(DP\)学习小结 这种辣鸡毒瘤东西也能叫算法... 很优秀的一个算法. 最基本的适用范围主要是数据范围极小的网格图路径计数问题. 如果是像\(Noi2018\)那种的话建议考生在其他两道题难度 ...

  5. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  6. LightOJ1033 Generating Palindromes(区间DP/LCS)

    题目要计算一个字符串最少添加几个字符使其成为回文串. 一年多前,我LCS这道经典DP例题看得还一知半解时遇到一样的问题,http://acm.fafu.edu.cn/problem.php?id=10 ...

  7. poj 1159 (DP LCS)

    滚动数组 + LCS // File Name: 1159.cpp // Author: Missa_Chen // Created Time: 2013年07月08日 星期一 10时07分13秒 # ...

  8. poj1080--Human Gene Functions(dp:LCS变形)

    Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17206   Accepted:  ...

  9. UVA 531 - Compromise(dp + LCS打印路径)

      Compromise  In a few months the European Currency Union will become a reality. However, to join th ...

随机推荐

  1. Apache配置命令

    Apache的主配置文件: 1.DocumentRoot——指定网站的根目录 提示:该目录必须存在.目录上不能有汉字或空格. 2.DirectoryIndex (1)描述:设置网站的默认首页文件.访问 ...

  2. html-----011--子窗体iframe

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. 02_Jquery_02_元素选择器

    [简述] 元素选择器就是通过元素名来查询元素 $("elementName")这里就可以通过元素名来获取jquery元素了. 但与id选择器不同的是,名称相同的元素有很多,所以获取 ...

  4. error signing assembly unknown error

    用VS2010 编译 C#工程,出现 Cryptographic failure while signing assembly 'Assembly.dll' -- 'Unknown error (80 ...

  5. 计数排序之python 实现源码

    old = [2, 5, 3, 0, 2, 3, 0, 3] new = [0, 0, 0, 0, 0, 0] for i in range(len(old)): new[old[i]] = new[ ...

  6. js禁止高频率连续点击思路

    1.类似react的数据流,点击之后立即设置值为空,当返回值后才可以点击 2.设置定时器,每次进入之前先清空掉定时器,然后开启定时器 <main> <div id="me& ...

  7. 【转】Oracle job procedure 存储过程定时任务

    原文:Oracle job procedure 存储过程定时任务 oracle job有定时执行的功能,可以在指定的时间点或每天的某个时间点自行执行任务. 一.查询系统中的job,可以查询视图 --相 ...

  8. C#XML创建与节点对象引用

    我们在创建xml过程中会遇到不同的级别有相同节点的情况.如下面的xml: <?xml version="1.0" encoding="GBK"> & ...

  9. 解决php的$美元符号与Zen Coding冲突问题

    Zen Coding插件就不介绍了. 众所周知,安装了插件以后,输入$符号会被自动解析为相应的数字1.2.3... 作为一名PHP程序员,想要通过其定义一些自己常用的代码.却发现展开以后悲剧的发现$符 ...

  10. mysqli_fetch_assoc与mysqli_result::fetch_assoc区别

    mysqli_fetch_assoc与mysqli_result::fetch_assoc区别