额、、失误、、

LCS是Longest Common Subsequence的缩写,即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

DP、O(n^2)解法:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
#define N 1010 int p,q;
int a[N];
int b[N];
int dp[N][N]; void solve()
{
int i,j;
memset(dp,,sizeof(dp));
for(i=;i<=p;i++)
{
for(j=;j<=q;j++)
{
if(a[i]==b[j])
{
dp[i][j]=dp[i-][j-]+;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
}
cout<<dp[p][q]<<endl;
}
int main()
{
int i;
while(scanf("%d%d",&p,&q)!=EOF)
{
for(i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
solve();
}
return ;
}

O(nlogn)解法:

参考http://www.cs.ucf.edu/courses/cap5937/fall2004/Longest%20common%20subsequence.pdf

最长公共子序列 的 nlogn 的算法本质是 将该问题转化成 最长增序列(LIS),因为 LIS 可以用nlogn实现,所以求LCS的时间复杂度降低为 nlogn。

转化:将LCS问题转化成LIS问题。

               假设有两个序列 s1[ 1~6 ] = { a, b, c , a, d, c }, s2[ 1~7 ] = { c, a, b, e, d, a, b }。

记录s1中每个元素在s2中出现的位置, 再将位置按降序排列, 则上面的例子可表示为:

loc( a)= { 6, 2 }, loc( b ) = { 7, 3 }, loc( c ) = { 1 }, loc( d ) = { 5 }。

将s1中每个元素的位置按s1中元素的顺序排列成一个序列s3 = { 6, 2, 7, 3, 1, 6, 2, 5, 1 }。

在对s3求LIS得到的值即为求LCS的答案。(这点我也只是大致理解,读者可以自己理解甚至证明。)

上面一段话转载自:http://blog.csdn.net/non_cease/article/details/6918848

1、当无重复元素时:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 1010 int len;
int p,q;
int a[N];
int b[N];
int dp[N]; void convert()
{
int i,hash[N]={};
for(i=;i<=p;i++)
{
hash[a[i]]=i;
}
for(i=;i<=q;i++)
{
b[i]=hash[b[i]];
}
}
int up_bound(int k)
{
int l=,r=len+;
while(l<r)
{
int m=(l+r)>>;
if(dp[m]<=k) l=m+;
else r=m;
}
return l;
}
void solve()
{
len=;
dp[]=-0x7ffffff;
for(int i=;i<=q;i++)
{
if(!b[i]) continue;
if(b[i]>dp[len]) dp[++len]=b[i];
else
{
int pos=up_bound(b[i]);
dp[pos]=b[i];
}
}
printf("%d\n",len);
}
int main()
{
while(scanf("%d%d",&p,&q)!=EOF)
{
for(int i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
convert();
solve();
}
return ;
}

2、当有重复元素时:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define N 10010 int n;
int p,q;
int len;
int a[N];
int b[N];
int s[N];
int dp[N]; void convert()
{
vector<int> v[N];
for(int i=;i<=p;i++)
{
v[a[i]].push_back(i);
}
n=;
for(int i=;i<=q;i++)
{
for(int j=v[b[i]].size()-;j>=;j--)
{
s[++n]=v[b[i]][j];
}
}
}
int up_bound(int k)
{
int l=,r=len+;
while(l<r)
{
int m=(l+r)>>;
if(dp[m]<=k) l=m+;
else r=m;
}
return l;
} void solve()
{
len=;
dp[]=-0x7fffffff;
for(int i=;i<=n;i++)
{
if(s[i]>dp[len]) dp[++len]=s[i];
else
{
int pos=up_bound(s[i]-);
dp[pos]=s[i];
}
}
printf("%d\n",len);
}
int main()
{
while(scanf("%d%d",&p,&q)!=EOF)
{
for(int i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
convert();
solve();
}
return ;
}

[DP] LCS小结的更多相关文章

  1. UVA.10192 Vacation (DP LCS)

    UVA.10192 Vacation (DP LCS) 题意分析 某人要指定旅游路线,父母分别给出了一系列城市的旅游顺序,求满足父母建议的最大的城市数量是多少. 对于父母的建议分别作为2个子串,对其做 ...

  2. UVA.10066 The Twin Towers (DP LCS)

    UVA.10066 The Twin Towers (DP LCS) 题意分析 有2座塔,分别由不同长度的石块组成.现在要求移走一些石块,使得这2座塔的高度相同,求高度最大是多少. 问题的实质可以转化 ...

  3. UVA-1625-Color Length(DP LCS变形)

    Color Length(UVA-1625)(DP LCS变形) 题目大意 输入两个长度分别为n,m(<5000)的颜色序列.要求按顺序合成同一个序列,即每次可以把一个序列开头的颜色放到新序列的 ...

  4. 插头$DP$学习小结

    插头\(DP\)学习小结 这种辣鸡毒瘤东西也能叫算法... 很优秀的一个算法. 最基本的适用范围主要是数据范围极小的网格图路径计数问题. 如果是像\(Noi2018\)那种的话建议考生在其他两道题难度 ...

  5. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  6. LightOJ1033 Generating Palindromes(区间DP/LCS)

    题目要计算一个字符串最少添加几个字符使其成为回文串. 一年多前,我LCS这道经典DP例题看得还一知半解时遇到一样的问题,http://acm.fafu.edu.cn/problem.php?id=10 ...

  7. poj 1159 (DP LCS)

    滚动数组 + LCS // File Name: 1159.cpp // Author: Missa_Chen // Created Time: 2013年07月08日 星期一 10时07分13秒 # ...

  8. poj1080--Human Gene Functions(dp:LCS变形)

    Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17206   Accepted:  ...

  9. UVA 531 - Compromise(dp + LCS打印路径)

      Compromise  In a few months the European Currency Union will become a reality. However, to join th ...

随机推荐

  1. c语言学习之基础知识点介绍(十三):枚举的介绍和使用

    一.枚举的介绍 /* 枚举:限制的待选项. 语法: enum 枚举名{ 选项1, 选项2, 选项3, ........ 选项n }; 注意:枚举中,选项之间用 , 隔开,最后一个不用加 , :并且枚举 ...

  2. mark jquery 链式调用的js原理

    我们在使用jquery的时候会用到类似$("#id").css('color','red').show(200); 这样写有点减少代码量,减少了逐步查询DOM的性能损耗: js 原 ...

  3. ITextSharp用来生成 PDF 的一个组件

    iTextSharp 是用来生成  PDF 的一个组件,在 1998 年夏天的时候,Bruno Lowagie ,iText 的创作者,参与了学校的一个项目,当时使用 HTML 来生成报告,但是,使用 ...

  4. java 知识 链接

    www.java2blog.com/2016/04/hashmap-in-java-with-examples.html HashMap全剖析 http://card.weibo.com/articl ...

  5. struts2基于Convention插件的约定映射使用

    一.首先说明一点:所谓的基于Convention插件的约定优于配置的使用,并不是严格意义上的零配置,struts.xml文件并不能完全舍弃. 获得Convention插件功能,所必需的jar包有:|a ...

  6. UVA 12097 LA 3635 Pie(二分法)

    Pie My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a numbe ...

  7. std::map的操作:插入、修改、删除和遍历

    using namespace std; std::map<int,int> m_map; 1.添加 for(int i=0;i<10;i++) { m_map.insert(mak ...

  8. Android中的自定义属性的实现

    Android开发中,如果系统提供的View组件不能满足我们的需求,我们就需要自定义自己的View,此时我们会想可不可以为自定义的View定义属性呢?答案是肯定的.我们可以定义自己的属性,然后像系统属 ...

  9. Linux下使用openvpn客户端

    安装 root 权限用户下 :yum install openvpn fedora23的yum可能会切换到dnf源上安装不必在意,等待就ok. 稍等片刻将自动安装好openvpn需要的软件包.安装完成 ...

  10. php中getimagesize函数的用法

    php获取图片信息getimagesize,php自带函数.获取图片的类型,尺寸的方法有许多,该函数仅是方法之一. getimagesize() 函数将测定任何 GIF,JPG,PNG,SWF,SWC ...