[BZOJ 3774] 最优选择 【最小割】
题目链接:BZOJ - 3774
题目分析
此题与“文理分科”那道题目有些类似。都是使用最小割来求解,先加上可能获得的权值,在减掉必须舍弃的权值(最小割)。
文理分科是规定每个人和 S 连就是选文,和 T 连就是选理。然后如果一个人和相邻的人都全文就会获得一个权值,那么我们就为这个权值建一个点,让这个点与必须同时选文的5个人连 INF 边。这样只要这 5 个人中有一个人选了理,就必须舍弃这个权值了。
再回到这道题目,这道题获得权值的条件是这个点被控制或这个点相邻的 4 个点都被控制。 这个“或”并不太好处理,我们就把这个条件拆成两个不相交的条件:
1)这个点被控制,可以获得权值。
2)这个点没有被控制且相邻的4个点都被控制,可以获得权值。
这样的话第一个条件就是不控制这个点需要付出的代价,第二个条件是“这个点没有被控制且相邻的4个点都被控制”,只要有一个点不符合就要割掉这个权值。
但是这些需要同时满足的条件有“被控制”和“不被控制”,直接用“文理分科”的建图方式是方向不一致的。
所以我们利用矩阵可以黑白染色成为二分图的性质,将矩阵的格子黑白染色之后,对于白点和黑点用相反的方式连边,这样黑点的“被控制”和白点的“不被控制”就是一个方向的了。
注意刚开始时预先加到答案里的权值是给定权值的两倍,因为我们将权值分成了两种情况。
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; inline int gmin(int a, int b) {return a < b ? a : b;} const int MaxMap = 50 + 5, MaxN = 5000 + 5, MaxM = 100000 + 5, INF = 999999999;
const int Dx[5] = {0, 0, 1, -1}, Dy[5] = {1, -1, 0, 0}; int n, m, nm, Tot, Ans, S, T;
int f[MaxMap][MaxMap], A[MaxMap][MaxMap], B[MaxMap][MaxMap], d[MaxN], Num[MaxN]; struct Edge
{
int v, w;
Edge *Next, *Other;
} E[MaxM], *P = E, *Point[MaxN], *Last[MaxN]; inline void AddEdge(int x, int y, int z)
{
Edge *Q = ++P; ++P;
P -> v = y; P -> w = z;
P -> Next = Point[x]; Point[x] = P; P -> Other = Q;
Q -> v = x; Q -> w = 0;
Q -> Next = Point[y]; Point[y] = Q; Q -> Other = P;
} inline bool Inside(int x, int y)
{
if (x < 1 || x > n) return false;
if (y < 1 || y > m) return false;
return true;
} int DFS(int Now, int Flow)
{
if (Now == T) return Flow;
int ret = 0;
for (Edge *j = Last[Now]; j; j = j -> Next)
if (j -> w && d[Now] == d[j -> v] + 1)
{
Last[Now] = j;
int p = DFS(j -> v, gmin(Flow - ret, j -> w));
ret += p; j -> w -= p; j -> Other -> w += p;
if (ret == Flow) return ret;
}
if (d[S] >= Tot) return ret;
if (--Num[d[Now]] == 0) d[S] = Tot;
++Num[++d[Now]];
Last[Now] = Point[Now];
return ret;
} int main()
{
scanf("%d%d", &n, &m);
nm = n * m;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
f[i][j] = (i - 1) * m + j;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
scanf("%d", &A[i][j]);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
{
scanf("%d", &B[i][j]);
Ans += B[i][j] * 2;
}
Tot = 2 * nm; S = ++Tot; T = ++Tot;
int x, y;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
{
if ((i + j) & 1)
{
AddEdge(f[i][j], T, A[i][j]);
AddEdge(S, f[i][j], B[i][j]);
AddEdge(nm + f[i][j], T, B[i][j]);
AddEdge(f[i][j], nm + f[i][j], INF);
for (int k = 0; k < 4; ++k)
{
x = i + Dx[k]; y = j + Dy[k];
if (!Inside(x, y)) continue;
AddEdge(f[x][y], nm + f[i][j], INF);
}
}
else
{
AddEdge(S, f[i][j], A[i][j]);
AddEdge(f[i][j], T, B[i][j]);
AddEdge(S, nm + f[i][j], B[i][j]);
AddEdge(nm + f[i][j], f[i][j], INF);
for (int k = 0; k < 4; ++k)
{
x = i + Dx[k]; y = j + Dy[k];
if (!Inside(x, y)) continue;
AddEdge(nm + f[i][j], f[x][y], INF);
}
}
}
memset(d, 0, sizeof(d));
memset(Num, 0, sizeof(Num)); Num[0] = Tot;
for (int i = 1; i <= Tot; ++i) Last[i] = Point[i];
while (d[S] < Tot) Ans -= DFS(S, INF);
printf("%d\n", Ans);
return 0;
}
[BZOJ 3774] 最优选择 【最小割】的更多相关文章
- BZOJ 3774: 最优选择( 最小割 )
最小割...二分染色然后把颜色不同的点的源汇反过来..然后就可以做了. 某个点(x,y): S->Id(x,y)(回报), Id(x,y)->T(代价), Id(i,j)&& ...
- BZOJ 3774 最优选择 (最小割+二分图)
题面传送门 题目大意:给你一个网格图,每个格子都有$a_{ij}$的代价和$b_{ij}$的回报,对于格子$ij$,想获得$b_{ij}$的回报,要么付出$a_{ij}$的代价,要么$ij$周围四联通 ...
- 【BZOJ3774】最优选择 最小割
[BZOJ3774]最优选择 Description 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- BZOJ 1497: [NOI2006]最大获利 最小割
1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...
- bzoj 1391 [Ceoi2008]order(最小割)
[题意] 有n个有偿工作选做,m个机器,完成一个工作需要若干个工序,完成每个工序需要一个机器,对于一个机器,在不同的工序有不同的租费,但买下来的费用只有一个.问最大获益. [思路] 对于工作和机器建点 ...
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- bzoj 4873: [Shoi2017]寿司餐厅 [最小割]
4873: [Shoi2017]寿司餐厅 题意:略 唯一会做的... 一眼最小割 就是最大权闭合子图呀 \(s\rightarrow d_{positive} \rightarrow -d_{negt ...
随机推荐
- 最大公约数与欧几里得(Euclid)算法
---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非 ...
- 用js对象创建链表
//以下是一个链表类 function LinkedList(){ //Node表示要加入列表的项 var Node=function(element){ this.element=element; ...
- 获取iframe 内元素的方法
1,原生的方法 首先给iframe 设置 id 属性 var obj = document.getElementById('iframe').contentWindow; setTimeout(fun ...
- 递归法绑定文件夹到导航树&在指定文件夹下新建文件夹
protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { if (Request.QueryString[&q ...
- hibernate设置mysql的timestamp默认值技巧
首先,要想使用数据库中配置的默认值就必须不让hibernate覆盖了默认值,需要配置property insert="false" update="false" ...
- 注意事项: Oracle Not Exists 及 Not In 使用
select value from temp_a awhere a.id between 1 and 100and not exists(select * from temp_b b where a. ...
- 第零篇、HTML5简介
1.什么是HTML5? 背景:互联网的快速兴起 1>网页5.0版本 2>2014年才定制HTML5标准 3>移动先行 2.为什么要使用HTML5? 1>跨平台(可以运行所有的浏 ...
- Json字符与Json对象的相互转换
Json字符与Json对象的相互转换方式有很多,接下来将为大家一一介绍下,感兴趣的朋友可以参考下哈,希望可以帮助到你 1>jQuery插件支持的转换方式: 复制代码 代码如下: $.parseJ ...
- Html5 js FileReader接口
用来把文件读入内存,并且读取文件中的数据.FileReader接口提供了一个异步API,使用该API可以在浏览器主线程中异步访问文件系统,读取文件中的数据.到目前文职,只有FF3.6+和Chrome6 ...
- 懒人记录 Hadoop2.7.1 集群搭建过程
懒人记录 Hadoop2.7.1 集群搭建过程 2016-07-02 13:15:45 总结 除了配置hosts ,和免密码互连之外,先在一台机器上装好所有东西 配置好之后,拷贝虚拟机,配置hosts ...