2276: [Poi2011]Temperature

Time Limit: 20 Sec  Memory Limit: 32 MB
Submit: 293  Solved: 117
[Submit][Status]

Description

The
Byteotian Institute of Meteorology (BIM) measures the air temperature
daily. The measurement is done automatically, and its result immediately
printed. Unfortunately, the ink in the printer has long dried out...
The employees of BIM however realised the fact only recently, when the
Byteotian Organisation for Meteorology (BOM) requested access to that
data.

An
eager intern by the name of Byteasar saved the day, as he
systematically noted down the temperatures reported by two domestic
alcohol thermometers placed on the north and south outside wall of the
BIM building. It was established decades ago by various BIM employees
that the temperature reported by the thermometer on the south wall of
the building is never lower than the actual temperature, while that
reported by the thermometer on the north wall of the building is never
higher than the actual temperature. Thus even though the exact
temperatures for each day remain somewhat of a mystery, the range they
were in is known at least.

Fortunately
for everyone involved (except Byteasar and you, perhaps), BOM does not
require exact temperatures. They only want to know the longest period in
which the temperature was not dropping (i.e. on each successive day it
was no smaller than on the day before). In fact, the veteran head of BIM
knows very well that BOM would like this period as long as possible. To
whitewash the negligence he insists that Byteasar determines, based on
his valuable notes, the longest period in which the temperature could have been
not dropping. Now this is a task that Byteasar did not quite expect on
his BIM internship, and he honestly has no idea how to tackle it. He
asks you for help in writing a program that determines the longest such
period.

某国进行了连续n天的温度测量,测量存在误差,测量结果是第i天温度在[l_i,r_i]范围内。
求最长的连续的一段,满足该段内可能温度不降。

Input

In
the first line of the standard input there is one integer
n(1<=N<=1000000) that denotes the number of days for which
Byteasar took notes on the temperature. The measurements from day are
given in the line no.i+1 Each of those lines holds two integers, x and y
(-10^9<=x<=y<=10^9). These denote, respectively, the minimum
and maximum possible temperature on that particular day, as reported by
the two thermometers.

In
some of the tests, worth 50 points in total, the temperatures never
drop below -50 degrees (Celsius, in case you wonder!) and never exceeds
50 degrees (-50<=x<=y<=50)

第一行n
下面n行,每行l_i,r_i
1<=n<=1000000

Output

In
the first and only line of the standard output your program should
print a single integer, namely the maximum number of days for which the
temperature in Byteotia could have been not dropping.

一行,表示该段的长度

Sample Input

6

6 10

1 5

4 8

2 5

6 8

3 5

Sample Output

4

HINT

 

Source

题解:

类似与pilots,我们可以枚举右端点 i,那么左端点 l[i]一定是单调不减的,那么就可以使用单调队列。

那么如何判断当前连续一段是否能单调不减呢?注意到如果x能被到达,那么所有y>x也一定能到达,而x就是这一段中温度最小值的最大值!

因为在到达该点之前,必须上升到x,之后又无法下降,所以合法的下界一定是这段区域里的温度最小的最大值,当然如果该值>当前i的上界,将队首元素弹出。

也就是说维护一个最小值单调递减的单调队列。

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 1000000+5

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {
int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int n,ans=,l=,r=,now,last=,a[maxn],b[maxn],q[maxn]; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();
for1(i,n)
{
a[i]=read();b[i]=read();
while(l<=r&&a[q[r]]<=a[i])r--;
q[++r]=i;
now=last;
while(a[q[l]]>b[i])now=q[l++]+;
ans=max(ans,i-now+);
last=now;
}
printf("%d\n",ans); return ; }

BZOJ2276: [Poi2011]Temperature的更多相关文章

  1. BZOJ2276 [Poi2011]Temperature 【单调队列】

    题目链接 BZOJ2276 题解 一开始看错题,以为求的是可以不连续的,想出一个奇怪的线段树,发现空间根本开不下?? 题目要我们求连续的最长可能不下降区间 对于区间\([l,r]\)如果合法,当且仅当 ...

  2. bzoj2276: [Poi2011]Temperature(单调队列/堆)

    这题有两种写法,而且是完全(几乎?)不一样的写法...并不是换了个方法来维护而已 单调队列O(N):用一个队列维护a[]的单调递减,对于每个i满足a[队头]<=b[i],然后就可以算出以每一位为 ...

  3. BZOJ2276:[POI2011]Temperature

    浅谈队列:https://www.cnblogs.com/AKMer/p/10314965.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...

  4. 【BZOJ2276】Temperature

    题面 Description The Byteotian Institute of Meteorology (BIM) measures the air temperature daily. The ...

  5. [POI2011]Temperature

    Description The Byteotian Institute of Meteorology (BIM) measures the air temperature daily. The mea ...

  6. BZOJ 2276: [Poi2011]Temperature 单调队列

    Code: #include<bits/stdc++.h> #define maxn 3000000 using namespace std; void setIO(string s) { ...

  7. bzoj 2276: [Poi2011]Temperature——单调队列

    Description 某国进行了连续n天的温度测量,测量存在误差,测量结果是第i天温度在[l_i,r_i]范围内. 求最长的连续的一段,满足该段内可能温度不降 第一行n 下面n行,每行l_i,r_i ...

  8. POI2011题解

    POI2011题解 2214先咕一会... [BZOJ2212][POI2011]Tree Rotations 线段树合并模板题. #include<cstdio> #include< ...

  9. [原博客] POI系列(4)

    正规.严谨.精妙. -POI BZOJ 1531 : [POI2005]Bank notes 裸的背包,可以二进制拆分一下.一个物品比如说有n个,可以拆成 1,2,4,8,16...个. OJ上没有样 ...

随机推荐

  1. 3D游戏引擎一 win32编程

    Windows程序一般都等待用户进行一些操作,然后响应并採取行动. 一般来说.对win32的程序的操作都会转换为系统事件队列中的消息,如按键消息WM_KEYDOWN,WM_MOUSECLICK等传递键 ...

  2. Java面试求职之==与equals()差别

    Java中equals和==的差别 java中的数据类型,可分为两类:     1.基本数据类型(也称原始数据类型):byte,short,char,int,long,float,double,boo ...

  3. Java中如何分析一个案列---猫狗案例为例

    猫狗案例: 具体事务: 猫.狗 共性: 姓名.年龄.吃饭 分析:从具体到抽象 猫: 姓名.年龄--->成员变量 吃饭       ---> 成员方法 构造方法:无参.有参 狗: 姓名.年龄 ...

  4. LNMP wget 记录

    源码下载 下载cmake(MySQL编译工具) http://www.cmake.org/files/v3.0/cmake-3.0.0.tar.gz 下载libmcrypt(PHPlibmcrypt模 ...

  5. python3下的super()

    大家都知道super是用来解决python钻石多重继承出现的基类重复调用的问题,这个就不赘述了,不了解的请点击. 但是我发现还有个问题在于不是钻石继承时继承先后顺序的问题,也就是如果mixin与继承的 ...

  6. iOS 中的传值方式

    一. 属性传值   将A页面所拥有的信息通过属性传递到B页面使用 很常用的传值,也很方便,但是要拿到类的属性.例如: B页面定义了一个naviTitle属性,在A页面中直接通过属性赋值将A页面中的值传 ...

  7. openssl提取pfx证书密钥对

    刚做银联的项目,对方给了1.pfx和1.cer两个测试文件,总结一下利用这两个文件提取出文本 银联提供两个测试证书  1.pfx 和 1.cer . 其中 pfx证书包含RSA的公钥和密钥;cer证书 ...

  8. 合(析)取范式转主合(析)取范式--》Java实现

    这次老师布置了如下上机作业,不限语言.思前想后,问了几个大神,说了一堆不知道什么鬼的算法名称.... 经过一番百度,发现Java可以包含库然后使用JavaScript的一些函数,其中eval() 函数 ...

  9. 【windows开发实现记事本程序——逻辑篇1】

    1. 主要内容 从本节开始介绍windows开发实现记事本程序的逻辑实现部分.本节的主要内容有以下3点: 1. 主窗口定义  -- 主要介绍记事本主界面窗口对应的窗口类及实现方案 2. RichEdi ...

  10. Java学习----构造方法的重载

    一个类中有多个同名的参数不一样(参数的个数,参数的类型,参数的顺序)的构造方法 public class Student { public Student() { System.out.println ...