UVa816 Abbott's Revenge
Abbott's Revenge
Time limit: 3.000 seconds
|
Abbott’s Revenge Abbott’s Revenge |
The 1999 World FinalsContest included a problem based on a “dicemaze.” At the time the problem was written, the judges were unable todiscover the original source of the dice maze concept. Shortly afterthe contest, however, Mr. Robert Abbott, the creator of numerous mazesand an author on the subject, contacted the contest judges andidentified himself as the originator of dice mazes. We regret that wedid not credit Mr. Abbott for his original concept in last year’sproblem statement. But we are happy to report that Mr. Abbott hasoffered his expertise to this year’s contest with his original andunpublished “walk-through arrow mazes.”
As are most mazes, awalk-through arrow maze is traversed by moving from intersection tointersection until the goal intersection is reached. As eachintersection is approached from a given direction, a sign near theentry to the intersection indicates in which directions theintersection can be exited. These directions are always left, forwardor right, or any combination of these.
Figure 1 illustrates awalk-through arrow maze. The intersections are identified as “(row,column)” pairs, with the upper left being (1,1). The “Entrance”intersection for Figure 1 is (3,1), and the “Goal” intersection is(3,3). You begin the maze by moving north from (3,1). As you walk from(3,1) to (2,1), the sign at (2,1) indicates that as you approach (2,1)from the south (traveling north) you may continue to go only forward.Continuing forward takes you toward (1,1). The sign at (1,1) as youapproach from the south indicates that you may exit (1,1) only bymaking a right. This turns you to the east now walking from (1,1)toward (1,2). So far there have been no choices to be made. This isalso the case as you continue to move from (1,2) to (2,2) to (2,3) to(1,3). Now, however, as you move west from (1,3) toward (1,2), you havethe option of continuing straight or turning left. Continuing straightwould take you on toward (1,1), while turning left would take you southto (2,2). The actual (unique) solution to this maze is the followingsequence of intersections: (3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3)(1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3).
You must write a programto solve valid walk-through arrow mazes. Solving a maze means (ifpossible) finding a route through the maze that leaves the Entrance inthe prescribed direction, and ends in the Goal. This route should notbe longer than necessary, of course. But if there are several solutionswhichare equally long, you can chose any of them.
Input
The input file willconsist of one or more arrow mazes. The first line of each mazedescription contains the name of the maze, which is an alphanumericstring of no more than 20 characters. The next line contains, in thefollowing order, the starting row, the starting column, the startingdirection, the goal row, and finally the goal column. All are delimitedby a single space. The maximum dimensions of a maze for this problemare 9 by 9, so all row and column numbers are single digits from 1 to9. The starting direction is one of the characters N, S, E or W,indicating north, south, east and west, respectively.
All remaining inputlines for a maze have this format: two integers, one or more groups ofcharacters, and a sentinel asterisk, again all delimited by a singlespace. The integers represent the row and column, respectively, of amaze intersection. Each character group represents a sign at thatintersection. The first character in the group is N, S, E or W toindicate in what direction of travel the sign would be seen. Forexample, S indicates that this is the sign that is seen when travellingsouth. (This is the sign posted at the north entrance to theintersection.) Following this first direction character are one tothree arrow characters. These can be L, F or R indicating left,forward, and right, respectively.
The list ofintersections is concluded by a line containing a single zero in thefirst column. The next line of the input starts the next maze, and soon. The end of input is the word END on a single line by itself.
Output
For each maze, theoutput file should contain a line with the name of the maze, followedby one or more lines with either a solution to the maze or the phrase“No Solution Possible”. Maze names should start in column 1, and allother lines should start in column 3, i.e., indented two spaces.Solutions should be output as a list of intersections in the format“(R,C)” in the order they are visited from the start to the goal,should be delimited by a single space, and all but the last line of thesolution should contain exactly 10 intersections.
The first maze in thefollowing sample input is the maze in Figure 1.
|
Sample Input |
Output for the Sample Input |
|
SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ELF * 2 3 SFR EL * 0 NOSOLUTION 3 1 N 3 2 1 1 WL NR * 1 2 NL ER * 2 1 SL WR NFR * 2 2 SR EL * 0 END |
SAMPLE (3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3) (1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3) NOSOLUTION No Solution Possible |
Figure 1: An Example Walk-ThroughArrow Maze
Figure 2: Robert Abbott’s AtlantaMaze
|
Robert Abbott’swalk-through arrow mazes are actually For the |
ACM World Finals 2000, Problem A
【思路】
BFS。
一道BFS搜索最短路径的问题,与其他题目不同的是结点的转向有了限制,但也不算麻烦。
首先根据输入构造has_edge[x][y][dir][turn]数组,表示位于xy朝向dir能否向turn转向。然后以位置(x,y)方向dir为状态宽搜即可。
需要注意的是:
1、 以将sx sy向sdir方向移动一格为初始状态
2、 转向+移动算作一步。
【代码】
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std; const int maxn = ;
const int maxm=+;
const char* dirs="NESW";
const char* turns="FLR";
const int dx[]={-,,,};
const int dy[]={,,,-};
struct Node{
int x,y,dir;
};
int id_dirs(char c) {
return strchr(dirs,c)-dirs;
}
int id_turns(char c) {
return strchr(turns,c)-turns;
} bool has_edge[maxn][maxn][][];
int n,m,sx,sy,sdir,ex,ey; bool vis[maxn][maxn][];
Node p[maxn][maxn][];
void print(Node u) {
vector<Node> ans;
for(;;) {
ans.push_back(u);
if(u.x==sx && u.y==sy && u.dir==sdir) break;
u=p[u.x][u.y][u.dir];
}
ans.push_back((Node){sx-dx[sdir],sy-dy[sdir],sdir});
int cnt=;
for(int i=ans.size()-;i>=;i--) {
if(cnt%==) putchar(' ');
printf(" (%d,%d)",ans[i].x,ans[i].y);
if(++cnt%==) putchar('\n');
}
if(ans.size()%!=) putchar('\n');
}
Node walk(Node u,int i) {
if(i==) { u.dir=(u.dir+)%; }
if(i==) { u.dir=(u.dir+)%; }
return (Node){u.x+dx[u.dir],u.y+dy[u.dir],u.dir} ;
}
bool inside(int x,int y) {
return x> && x<= && y> && y<=;
}
void BFS() {
memset(vis,,sizeof(vis));
queue<Node> q;
q.push((Node){sx,sy,sdir});
vis[sx][sy][sdir]=;
while(!q.empty()) {
Node u=q.front(); q.pop();
if(u.x==ex && u.y==ey) { print(u); return ; }
for(int i=;i<;i++) {
Node v=walk(u,i);
if(has_edge[u.x][u.y][u.dir][i] && inside(v.x,v.y) && !vis[v.x][v.y][v.dir]) {
vis[v.x][v.y][v.dir]=;
p[v.x][v.y][v.dir]=u;
q.push(v);
}
}
}
printf(" No Solution Possible\n");
} int main() {
char T[maxm];
while(scanf("%s",&T))
{
char s[maxm];
if (scanf("%d%d%s%d%d",&sx,&sy,&s,&ex,&ey) != ) break;
sdir=id_dirs(s[]);
sx += dx[sdir] , sy += dy[sdir];
memset(has_edge,,sizeof(has_edge));
int x,y;
while(scanf("%d",&x) && x) {
scanf("%d",&y);
while(scanf("%s",&s) && s[]!='*') {
int dir=id_dirs(s[]);
for(int i=;i<strlen(s);i++) has_edge[x][y][dir][id_turns(s[i])]=;
}
}
printf("%s\n",T);
BFS();
}
return ;
}
UVa816 Abbott's Revenge的更多相关文章
- UVA816 Abbott's Revenge (三元组BFS)
题目描述: 输入输出: 输入样例: SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ...
- L - Abbott's Revenge(比较复杂的bfs)
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Status Practice UV ...
- UVA 816 -- Abbott's Revenge(BFS求最短路)
UVA 816 -- Abbott's Revenge(BFS求最短路) 有一个 9 * 9 的交叉点的迷宫. 输入起点, 离开起点时的朝向和终点, 求最短路(多解时任意一个输出即可).进入一个交叉 ...
- 【例题 6-14 UVA-816】Abbott's Revenge
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 预处理出某个方向的左边.前边.右边是哪个方向就好了. 然后就是普通的bfs了. hash存到某个点,走到这里的方向的最小距离. df ...
- UVA816 Abbott的复仇 Abbott's Revenge
以此纪念一道用四天时间完结的题 敲了好几次代码的出错点:(以下均为正确做法) memset初始化 真正的出发位置必须找出. 转换东西南北的数组要从0开始. bfs没有初始化第一个d 是否到达要在刚刚取 ...
- Abbott's Revenge UVA - 816 (输出bfs路径)
题目链接:https://vjudge.net/problem/UVA-816 题目大意: 有一个最多包含9*9 个交叉点的迷宫.输入起点,离开起点时的朝向和终点,求一条最短路(多解时任意输出 一个即 ...
- uva 816 abbott's revenge ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAncAAAN5CAYAAABqtx2mAAAgAElEQVR4nOy9sY4jydKezVuoayhH0r
- UVa (一道比较复杂的广搜) 816 Abbott’s Revenge
题意: 给出一个迷宫,在迷宫的节点处,面向某个方向只能向给定的方向转弯.给出起点和终点输出迷宫的最短路径,这里指的是刚刚离开起点的时刻,所以即使起点和终点重合路径也非空. 分析: 用三个变量来表示状态 ...
- UVA 816 Abbott’s Revenge
bfs求最短路,递归打印最短路的具体路径: 难点: 当前状态和转弯方式很复杂,要仔细处理: 递归打印:用一个数组存储路径中结点的前一个节点,递归查找 (bfs无法确定下一个结点,但对于没一个结点,它的 ...
随机推荐
- Android基础问题汇总
一.android:gravity 和android:layout_gravity的区别: android;gravity是自己的内容相对于自己的控件的位置,而android:layout_gravi ...
- 解决weblogic与系统时间相差8小时的问题
解决weblogic与系统时间相差8小时的问题 在一般情况下weblogic与系统时间是很少会出现时间差的问题,但有可能在某一特定的情况下就会出现,如使用weblogic8版本时可能会出现时差问题: ...
- js--Ajax的小知识(二):处理ajax的session过期的请求
问题的产生: 现如今Ajax在Web项目中应用广泛,几乎可以说无处不在. 有时会碰到这样个问题:当Ajax请求遇到Session超时,应该怎么办? 显而易见,传统的页面跳转在此已经不适用,因为Ajax ...
- JS 同源策略
对于任何基于WEB的应用,最重要的就是安全性.JS中有各种安全检查以防止恶意脚本攻击你的机器,其中一些特定的安全手段在各种浏览器中都有采用.如:Mozilla有个完全独特的完全模型,涉及到了签署脚本和 ...
- Eclipse反编译工具Jad及插件
Eclipse反编译工具Jad及插件下载路径 http://download.csdn.net/detail/lijun7788/9689312 http://files.cnblogs.com/fi ...
- Fibonacci 数列递归 重复计算
public class Fibonacci{ public static long F(long n){ System.out.println("call F" + n); ) ...
- VS 2012中消失了的Create UnitTest
前言:最近正在研究一个新项目的开发工作,这个项目的要求是必须写UnitTest,对于我个人来讲是很不喜欢写UnitTest的感觉这个东西会很大程度的延误开发进度,所以之前项目的UnitTest是能不写 ...
- Savelog项目总结回忆
Savelog项目的细节已经不太记得,感觉有些遥远,需要翻回旧的笔记本电脑或者是旧的笔记本. 概述: 本项目采用的Linux C,监听一个或多个特殊的端口,当其中一个端口有发起连接时就产生一个新的线程 ...
- 使用PHP脚本来写Daemon程序
什么是Daemon进程 这又是一个有趣的概念,daemon在英语中是"精灵"的意思,就像我们经常在迪斯尼动画里见到的那些,有些会飞,有些不会,经常围着动画片的主人公转来转去,啰 ...
- prepare—Article【准备篇】之SSH_tool#PuTTY
第一:下载PuTTY: url : http://www.openssh.com/ 下载界面: 安装后: 详解以上命令 ① ② PuTTYgen is a key generator. It ...