UVa816 Abbott's Revenge
Abbott's Revenge
Time limit: 3.000 seconds
Abbott’s Revenge Abbott’s Revenge |
The 1999 World FinalsContest included a problem based on a “dicemaze.” At the time the problem was written, the judges were unable todiscover the original source of the dice maze concept. Shortly afterthe contest, however, Mr. Robert Abbott, the creator of numerous mazesand an author on the subject, contacted the contest judges andidentified himself as the originator of dice mazes. We regret that wedid not credit Mr. Abbott for his original concept in last year’sproblem statement. But we are happy to report that Mr. Abbott hasoffered his expertise to this year’s contest with his original andunpublished “walk-through arrow mazes.”
As are most mazes, awalk-through arrow maze is traversed by moving from intersection tointersection until the goal intersection is reached. As eachintersection is approached from a given direction, a sign near theentry to the intersection indicates in which directions theintersection can be exited. These directions are always left, forwardor right, or any combination of these.
Figure 1 illustrates awalk-through arrow maze. The intersections are identified as “(row,column)” pairs, with the upper left being (1,1). The “Entrance”intersection for Figure 1 is (3,1), and the “Goal” intersection is(3,3). You begin the maze by moving north from (3,1). As you walk from(3,1) to (2,1), the sign at (2,1) indicates that as you approach (2,1)from the south (traveling north) you may continue to go only forward.Continuing forward takes you toward (1,1). The sign at (1,1) as youapproach from the south indicates that you may exit (1,1) only bymaking a right. This turns you to the east now walking from (1,1)toward (1,2). So far there have been no choices to be made. This isalso the case as you continue to move from (1,2) to (2,2) to (2,3) to(1,3). Now, however, as you move west from (1,3) toward (1,2), you havethe option of continuing straight or turning left. Continuing straightwould take you on toward (1,1), while turning left would take you southto (2,2). The actual (unique) solution to this maze is the followingsequence of intersections: (3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3)(1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3).
You must write a programto solve valid walk-through arrow mazes. Solving a maze means (ifpossible) finding a route through the maze that leaves the Entrance inthe prescribed direction, and ends in the Goal. This route should notbe longer than necessary, of course. But if there are several solutionswhichare equally long, you can chose any of them.
Input
The input file willconsist of one or more arrow mazes. The first line of each mazedescription contains the name of the maze, which is an alphanumericstring of no more than 20 characters. The next line contains, in thefollowing order, the starting row, the starting column, the startingdirection, the goal row, and finally the goal column. All are delimitedby a single space. The maximum dimensions of a maze for this problemare 9 by 9, so all row and column numbers are single digits from 1 to9. The starting direction is one of the characters N, S, E or W,indicating north, south, east and west, respectively.
All remaining inputlines for a maze have this format: two integers, one or more groups ofcharacters, and a sentinel asterisk, again all delimited by a singlespace. The integers represent the row and column, respectively, of amaze intersection. Each character group represents a sign at thatintersection. The first character in the group is N, S, E or W toindicate in what direction of travel the sign would be seen. Forexample, S indicates that this is the sign that is seen when travellingsouth. (This is the sign posted at the north entrance to theintersection.) Following this first direction character are one tothree arrow characters. These can be L, F or R indicating left,forward, and right, respectively.
The list ofintersections is concluded by a line containing a single zero in thefirst column. The next line of the input starts the next maze, and soon. The end of input is the word END on a single line by itself.
Output
For each maze, theoutput file should contain a line with the name of the maze, followedby one or more lines with either a solution to the maze or the phrase“No Solution Possible”. Maze names should start in column 1, and allother lines should start in column 3, i.e., indented two spaces.Solutions should be output as a list of intersections in the format“(R,C)” in the order they are visited from the start to the goal,should be delimited by a single space, and all but the last line of thesolution should contain exactly 10 intersections.
The first maze in thefollowing sample input is the maze in Figure 1.
Sample Input |
Output for the Sample Input |
SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ELF * 2 3 SFR EL * 0 NOSOLUTION 3 1 N 3 2 1 1 WL NR * 1 2 NL ER * 2 1 SL WR NFR * 2 2 SR EL * 0 END |
SAMPLE (3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3) (1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3) NOSOLUTION No Solution Possible |
Figure 1: An Example Walk-ThroughArrow Maze
Figure 2: Robert Abbott’s AtlantaMaze
Robert Abbott’swalk-through arrow mazes are actually For the |
ACM World Finals 2000, Problem A
【思路】
BFS。
一道BFS搜索最短路径的问题,与其他题目不同的是结点的转向有了限制,但也不算麻烦。
首先根据输入构造has_edge[x][y][dir][turn]数组,表示位于xy朝向dir能否向turn转向。然后以位置(x,y)方向dir为状态宽搜即可。
需要注意的是:
1、 以将sx sy向sdir方向移动一格为初始状态
2、 转向+移动算作一步。
【代码】
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std; const int maxn = ;
const int maxm=+;
const char* dirs="NESW";
const char* turns="FLR";
const int dx[]={-,,,};
const int dy[]={,,,-};
struct Node{
int x,y,dir;
};
int id_dirs(char c) {
return strchr(dirs,c)-dirs;
}
int id_turns(char c) {
return strchr(turns,c)-turns;
} bool has_edge[maxn][maxn][][];
int n,m,sx,sy,sdir,ex,ey; bool vis[maxn][maxn][];
Node p[maxn][maxn][];
void print(Node u) {
vector<Node> ans;
for(;;) {
ans.push_back(u);
if(u.x==sx && u.y==sy && u.dir==sdir) break;
u=p[u.x][u.y][u.dir];
}
ans.push_back((Node){sx-dx[sdir],sy-dy[sdir],sdir});
int cnt=;
for(int i=ans.size()-;i>=;i--) {
if(cnt%==) putchar(' ');
printf(" (%d,%d)",ans[i].x,ans[i].y);
if(++cnt%==) putchar('\n');
}
if(ans.size()%!=) putchar('\n');
}
Node walk(Node u,int i) {
if(i==) { u.dir=(u.dir+)%; }
if(i==) { u.dir=(u.dir+)%; }
return (Node){u.x+dx[u.dir],u.y+dy[u.dir],u.dir} ;
}
bool inside(int x,int y) {
return x> && x<= && y> && y<=;
}
void BFS() {
memset(vis,,sizeof(vis));
queue<Node> q;
q.push((Node){sx,sy,sdir});
vis[sx][sy][sdir]=;
while(!q.empty()) {
Node u=q.front(); q.pop();
if(u.x==ex && u.y==ey) { print(u); return ; }
for(int i=;i<;i++) {
Node v=walk(u,i);
if(has_edge[u.x][u.y][u.dir][i] && inside(v.x,v.y) && !vis[v.x][v.y][v.dir]) {
vis[v.x][v.y][v.dir]=;
p[v.x][v.y][v.dir]=u;
q.push(v);
}
}
}
printf(" No Solution Possible\n");
} int main() {
char T[maxm];
while(scanf("%s",&T))
{
char s[maxm];
if (scanf("%d%d%s%d%d",&sx,&sy,&s,&ex,&ey) != ) break;
sdir=id_dirs(s[]);
sx += dx[sdir] , sy += dy[sdir];
memset(has_edge,,sizeof(has_edge));
int x,y;
while(scanf("%d",&x) && x) {
scanf("%d",&y);
while(scanf("%s",&s) && s[]!='*') {
int dir=id_dirs(s[]);
for(int i=;i<strlen(s);i++) has_edge[x][y][dir][id_turns(s[i])]=;
}
}
printf("%s\n",T);
BFS();
}
return ;
}
UVa816 Abbott's Revenge的更多相关文章
- UVA816 Abbott's Revenge (三元组BFS)
题目描述: 输入输出: 输入样例: SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ...
- L - Abbott's Revenge(比较复杂的bfs)
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Status Practice UV ...
- UVA 816 -- Abbott's Revenge(BFS求最短路)
UVA 816 -- Abbott's Revenge(BFS求最短路) 有一个 9 * 9 的交叉点的迷宫. 输入起点, 离开起点时的朝向和终点, 求最短路(多解时任意一个输出即可).进入一个交叉 ...
- 【例题 6-14 UVA-816】Abbott's Revenge
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 预处理出某个方向的左边.前边.右边是哪个方向就好了. 然后就是普通的bfs了. hash存到某个点,走到这里的方向的最小距离. df ...
- UVA816 Abbott的复仇 Abbott's Revenge
以此纪念一道用四天时间完结的题 敲了好几次代码的出错点:(以下均为正确做法) memset初始化 真正的出发位置必须找出. 转换东西南北的数组要从0开始. bfs没有初始化第一个d 是否到达要在刚刚取 ...
- Abbott's Revenge UVA - 816 (输出bfs路径)
题目链接:https://vjudge.net/problem/UVA-816 题目大意: 有一个最多包含9*9 个交叉点的迷宫.输入起点,离开起点时的朝向和终点,求一条最短路(多解时任意输出 一个即 ...
- uva 816 abbott's revenge ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAncAAAN5CAYAAABqtx2mAAAgAElEQVR4nOy9sY4jydKezVuoayhH0r
- UVa (一道比较复杂的广搜) 816 Abbott’s Revenge
题意: 给出一个迷宫,在迷宫的节点处,面向某个方向只能向给定的方向转弯.给出起点和终点输出迷宫的最短路径,这里指的是刚刚离开起点的时刻,所以即使起点和终点重合路径也非空. 分析: 用三个变量来表示状态 ...
- UVA 816 Abbott’s Revenge
bfs求最短路,递归打印最短路的具体路径: 难点: 当前状态和转弯方式很复杂,要仔细处理: 递归打印:用一个数组存储路径中结点的前一个节点,递归查找 (bfs无法确定下一个结点,但对于没一个结点,它的 ...
随机推荐
- SQL小细节
平时有些小细节,不留意的话很容易得到错误的答案,我们来看下下面的代码,看看你是否能答对呢? ) ,) SELECT @str = '中国CH',@info='MyTest' SELECT [字符串]= ...
- Play - js/css concatenation & minify
1. Css We’ll use LESS CSS, all less sources are defined in the app/assets, and they will be compiled ...
- Oracle OEM建库实例
OEM是一个图形化的数据库管理员工具.它为数据库管理员提供了一个集中的系统管理工具,同时 它也是一个用来管理.诊断和调试多个数据库的工具,一个用来管理来自多个地点的多个网络节点和服务的工具.该工具可以 ...
- java基础(死循环退出选项)
java程序中为了程序正常运行,需要给无限循环加入一个退出选项,保证程序的可执行性. import java.util.Scanner; public class { public static vo ...
- php的各种配置
问题:1.如果去掉URL_MODEL=1时的index.php第一步:把Apache配置文件中的LoadModule rewrite_module modules/mod_rewrite.so 取消注 ...
- jQuery.ajax() datatype:“json" 转换失败
当使用jQuery.ajax() 时,如果设置dataType:"json",如果返回的字符转换出错则不会调用success方法,而进入error方法,控制台中也不会出现错误信息 ...
- php中的NOTICE 的错误解决方法
PHP新手NOTICE错误,特此写给那些遇到和我一样错误的朋友. 刚学习PHP,不久 最近在整留言板,刚才遇到个问题. 页面中,好多类似 Notice: in D:\wamp\www\study\ ...
- Shortcut Collapse project or projects in the Solution Explorer Microsoft Visual Studio 2008
The standard windows keyboard shortcuts for expanding and collapsing treeviews are: Numeric Keypad * ...
- 为何要fork()两次来避免产生僵尸进程??
最近安装书上说的,开始搞多进程了..看到了一个好帖子,学习学习 http://blog.sina.com.cn/s/blog_9f1496990100y420.html 首先我们要明白,为什么要避免僵 ...
- codevs 1557 热浪
传送门 题目描述 Description 德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很擅长生產富含奶油的乳製品.Farmer John此时以先天 ...