Abbott's Revenge

Time limit: 3.000 seconds

Abbott’s Revenge 

Abbott’s Revenge

The 1999 World FinalsContest included a problem based on a “dicemaze.” At the time the problem was written, the judges were unable todiscover the original source of the dice maze concept. Shortly afterthe contest, however, Mr. Robert Abbott, the creator of numerous mazesand an author on the subject, contacted the contest judges andidentified himself as the originator of dice mazes. We regret that wedid not credit Mr. Abbott for his original concept in last year’sproblem statement. But we are happy to report that Mr. Abbott hasoffered his expertise to this year’s contest with his original andunpublished “walk-through arrow mazes.”

As are most mazes, awalk-through arrow maze is traversed by moving from intersection tointersection until the goal intersection is reached. As eachintersection is approached from a given direction, a sign near theentry to the intersection indicates in which directions theintersection can be exited. These directions are always left, forwardor right, or any combination of these.

Figure 1 illustrates awalk-through arrow maze. The intersections are identified as “(row,column)” pairs, with the upper left being (1,1). The “Entrance”intersection for Figure 1 is (3,1), and the “Goal” intersection is(3,3). You begin the maze by moving north from (3,1). As you walk from(3,1) to (2,1), the sign at (2,1) indicates that as you approach (2,1)from the south (traveling north) you may continue to go only forward.Continuing forward takes you toward (1,1). The sign at (1,1) as youapproach from the south indicates that you may exit (1,1) only bymaking a right. This turns you to the east now walking from (1,1)toward (1,2). So far there have been no choices to be made. This isalso the case as you continue to move from (1,2) to (2,2) to (2,3) to(1,3). Now, however, as you move west from (1,3) toward (1,2), you havethe option of continuing straight or turning left. Continuing straightwould take you on toward (1,1), while turning left would take you southto (2,2). The actual (unique) solution to this maze is the followingsequence of intersections: (3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3)(1,2) (1,1) (2,1) (2,2) (1,2) (1,3) (2,3) (3,3).

You must write a programto solve valid walk-through arrow mazes. Solving a maze means (ifpossible) finding a route through the maze that leaves the Entrance inthe prescribed direction, and ends in the Goal. This route should notbe longer than necessary, of course. But if there are several solutionswhichare equally long, you can chose any of them.

Input 

The input file willconsist of one or more arrow mazes. The first line of each mazedescription contains the name of the maze, which is an alphanumericstring of no more than 20 characters. The next line contains, in thefollowing order, the starting row, the starting column, the startingdirection, the goal row, and finally the goal column. All are delimitedby a single space. The maximum dimensions of a maze for this problemare 9 by 9, so all row and column numbers are single digits from 1 to9. The starting direction is one of the characters N, S, E or W,indicating north, south, east and west, respectively.

All remaining inputlines for a maze have this format: two integers, one or more groups ofcharacters, and a sentinel asterisk, again all delimited by a singlespace. The integers represent the row and column, respectively, of amaze intersection. Each character group represents a sign at thatintersection. The first character in the group is N, S, E or W toindicate in what direction of travel the sign would be seen. Forexample, S indicates that this is the sign that is seen when travellingsouth. (This is the sign posted at the north entrance to theintersection.) Following this first direction character are one tothree arrow characters. These can be L, F or R indicating left,forward, and right, respectively.

The list ofintersections is concluded by a line containing a single zero in thefirst column. The next line of the input starts the next maze, and soon. The end of input is the word END on a single line by itself.

Output 

For each maze, theoutput file should contain a line with the name of the maze, followedby one or more lines with either a solution to the maze or the phrase“No Solution Possible”. Maze names should start in column 1, and allother lines should start in column 3, i.e., indented two spaces.Solutions should be output as a list of intersections in the format“(R,C)” in the order they are visited from the start to the goal,should be delimited by a single space, and all but the last line of thesolution should contain exactly 10 intersections.

The first maze in thefollowing sample input is the maze in Figure 1.

Sample Input

Output for the Sample Input

SAMPLE

3 1 N 3 3

1 1 WL NR *

1 2 WLF NR ER *

1 3 NL ER *

2 1 SL WR NF *

2 2 SL WF ELF *

2 3 SFR EL *

0

NOSOLUTION

3 1 N 3 2

1 1 WL NR *

1 2 NL ER *

2 1 SL WR NFR *

2 2 SR EL *

0

END

SAMPLE

(3,1) (2,1) (1,1) (1,2) (2,2) (2,3) (1,3) (1,2) (1,1) (2,1)

(2,2) (1,2) (1,3) (2,3) (3,3)

NOSOLUTION

No Solution Possible

Figure 1: An Example Walk-ThroughArrow Maze

Figure 2: Robert Abbott’s AtlantaMaze

Robert Abbott’swalk-through arrow mazes are actually
intended forlarge-scale construction, not paper. Although his mazes
areunpublished, some of them have actually been built. One of these is
ondisplay at an Atlanta museum. Others have been constructed by theAmerican
Maze Company over the past two summers. As their name suggeststhese mazes are
intended to be walked through.

For the
adventurous, Figure 2 is a graphic of Robert Abbott’sAtlanta maze. Solving it
isquite difficult, even when you have an overview of the entire maze.Imagine
trying to solve this by actually walking through the maze andonly seeing one
sign at a time! Robert Abbott himself indicated thatthe maze is too complex
and most people give up before finishing. Amongthe people that did not give
up was Donald Knuth: it took him aboutthirty minutes to solve the maze.


ACM World Finals 2000, Problem A

【思路】

BFS。

一道BFS搜索最短路径的问题,与其他题目不同的是结点的转向有了限制,但也不算麻烦。

首先根据输入构造has_edge[x][y][dir][turn]数组,表示位于xy朝向dir能否向turn转向。然后以位置(x,y)方向dir为状态宽搜即可。

需要注意的是:

1、  以将sx sy向sdir方向移动一格为初始状态

2、  转向+移动算作一步。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std; const int maxn = ;
const int maxm=+;
const char* dirs="NESW";
const char* turns="FLR";
const int dx[]={-,,,};
const int dy[]={,,,-};
struct Node{
int x,y,dir;
};
int id_dirs(char c) {
return strchr(dirs,c)-dirs;
}
int id_turns(char c) {
return strchr(turns,c)-turns;
} bool has_edge[maxn][maxn][][];
int n,m,sx,sy,sdir,ex,ey; bool vis[maxn][maxn][];
Node p[maxn][maxn][];
void print(Node u) {
vector<Node> ans;
for(;;) {
ans.push_back(u);
if(u.x==sx && u.y==sy && u.dir==sdir) break;
u=p[u.x][u.y][u.dir];
}
ans.push_back((Node){sx-dx[sdir],sy-dy[sdir],sdir});
int cnt=;
for(int i=ans.size()-;i>=;i--) {
if(cnt%==) putchar(' ');
printf(" (%d,%d)",ans[i].x,ans[i].y);
if(++cnt%==) putchar('\n');
}
if(ans.size()%!=) putchar('\n');
}
Node walk(Node u,int i) {
if(i==) { u.dir=(u.dir+)%; }
if(i==) { u.dir=(u.dir+)%; }
return (Node){u.x+dx[u.dir],u.y+dy[u.dir],u.dir} ;
}
bool inside(int x,int y) {
return x> && x<= && y> && y<=;
}
void BFS() {
memset(vis,,sizeof(vis));
queue<Node> q;
q.push((Node){sx,sy,sdir});
vis[sx][sy][sdir]=;
while(!q.empty()) {
Node u=q.front(); q.pop();
if(u.x==ex && u.y==ey) { print(u); return ; }
for(int i=;i<;i++) {
Node v=walk(u,i);
if(has_edge[u.x][u.y][u.dir][i] && inside(v.x,v.y) && !vis[v.x][v.y][v.dir]) {
vis[v.x][v.y][v.dir]=;
p[v.x][v.y][v.dir]=u;
q.push(v);
}
}
}
printf(" No Solution Possible\n");
} int main() {
char T[maxm];
while(scanf("%s",&T))
{
char s[maxm];
if (scanf("%d%d%s%d%d",&sx,&sy,&s,&ex,&ey) != ) break;
sdir=id_dirs(s[]);
sx += dx[sdir] , sy += dy[sdir];
memset(has_edge,,sizeof(has_edge));
int x,y;
while(scanf("%d",&x) && x) {
scanf("%d",&y);
while(scanf("%s",&s) && s[]!='*') {
int dir=id_dirs(s[]);
for(int i=;i<strlen(s);i++) has_edge[x][y][dir][id_turns(s[i])]=;
}
}
printf("%s\n",T);
BFS();
}
return ;
}

UVa816 Abbott's Revenge的更多相关文章

  1. UVA816 Abbott's Revenge (三元组BFS)

    题目描述: 输入输出: 输入样例: SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ...

  2. L - Abbott's Revenge(比较复杂的bfs)

    Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Practice UV ...

  3. UVA 816 -- Abbott's Revenge(BFS求最短路)

     UVA 816 -- Abbott's Revenge(BFS求最短路) 有一个 9 * 9 的交叉点的迷宫. 输入起点, 离开起点时的朝向和终点, 求最短路(多解时任意一个输出即可).进入一个交叉 ...

  4. 【例题 6-14 UVA-816】Abbott's Revenge

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 预处理出某个方向的左边.前边.右边是哪个方向就好了. 然后就是普通的bfs了. hash存到某个点,走到这里的方向的最小距离. df ...

  5. UVA816 Abbott的复仇 Abbott's Revenge

    以此纪念一道用四天时间完结的题 敲了好几次代码的出错点:(以下均为正确做法) memset初始化 真正的出发位置必须找出. 转换东西南北的数组要从0开始. bfs没有初始化第一个d 是否到达要在刚刚取 ...

  6. Abbott's Revenge UVA - 816 (输出bfs路径)

    题目链接:https://vjudge.net/problem/UVA-816 题目大意: 有一个最多包含9*9 个交叉点的迷宫.输入起点,离开起点时的朝向和终点,求一条最短路(多解时任意输出 一个即 ...

  7. uva 816 abbott's revenge ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAncAAAN5CAYAAABqtx2mAAAgAElEQVR4nOy9sY4jydKezVuoayhH0r

  8. UVa (一道比较复杂的广搜) 816 Abbott’s Revenge

    题意: 给出一个迷宫,在迷宫的节点处,面向某个方向只能向给定的方向转弯.给出起点和终点输出迷宫的最短路径,这里指的是刚刚离开起点的时刻,所以即使起点和终点重合路径也非空. 分析: 用三个变量来表示状态 ...

  9. UVA 816 Abbott’s Revenge

    bfs求最短路,递归打印最短路的具体路径: 难点: 当前状态和转弯方式很复杂,要仔细处理: 递归打印:用一个数组存储路径中结点的前一个节点,递归查找 (bfs无法确定下一个结点,但对于没一个结点,它的 ...

随机推荐

  1. CodeSmith中SchemaExplorer属性的介绍

    CodeSmith与数据库的联系,在CodeSmith中自带一个程序集SchemaExplorer.dll,这个程序集中的类主要用于获取数据库中各种对象的结构. <%@ Property Nam ...

  2. Oracle 11g 新特性(一)-- 虚拟列

    数据库版本: Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - 64bit Oracle11g 增加了虚拟列的新特性, 具体说明如 ...

  3. Android 点击事件,4种回调。

    1.  继承监听接口. 2.  xml方式 : 设置 android:onClick 3. 内部类 4. 匿名类 ------------------------------------------- ...

  4. js日期格式,日期对象

    以对象为基准去使用方法, 围绕Date对象 var a = new Date() 返回当前的时间对象,可以使用内置的日期对象的方法 a.getFullYear(), a.getMonth(), a.g ...

  5. 读书笔记之 - javascript 设计模式 - 观察者模式

    在事件驱动的环境中,比如浏览器这种持续寻求用户关注的环境中,观察者模式是一种管理人与其任务(确切的讲,是对象及其行为和状态之间的关系)之间的关系的得力工具.用javascript的话来讲,这种模式的实 ...

  6. Java学习----finally块

    public class Test { String x; public static void main(String[] args) { Test test = new Test(); try { ...

  7. DataTable一些操作

    DataTable ReturnDt = new DataTable("Tab_Result"); ReturnDt.Columns.AddRange(new DataColumn ...

  8. 2016021902 - linux解压缩命令

    转载自:http://blog.csdn.net/luo86106/article/details/6946255 .gz 解压1:gunzip FileName.gz 解压2:gzip -d Fil ...

  9. Find your present (2) (位异或)

    Problem Description In the new year party, everybody will get a "special present".Now it's ...

  10. ios8新特性widget开发-b

    os8发布已经有一段时间了,伴随着ios8同时也出现了许多新的特性,ios系统将会越来越开放,这是好事.其中一个新特性就是在下拉通知栏里加入了个性的widget,开发者可以自己定义widget的样式内 ...