[OJ] Lowest Common Ancestor
LintCode 88. Lowest Common Ancestor (Medium)
LeetCode 236. Lowest Common Ancestor of a Binary Tree (Medium)
今天写了三种解法, 都比较长.
解法1 前序递归DFS, 计数
这个解法的判断比较啰嗦, 但好处就是, 能够根据当前情况选择是否继续向下遍历, 不做无用的搜索. 越早地找到两个节点, 程序就会越早结束.
class Solution {
private:
TreeNode *lca;
TreeNode *tA, *tB;
int findLCA(TreeNode *root) {
if (!root) return 0;
int cnt = 0;
if (root->val == tA->val) ++cnt;
if (root->val == tB->val) ++cnt;
if (cnt == 2) {
lca = root;
return 2;
}
int leftCnt = findLCA(root->left);
if (leftCnt == 2) return 2;
cnt += leftCnt;
if (cnt == 2) {
lca = root;
} else {
int rightCnt = findLCA(root->right);
if (rightCnt == 2) return 2;
cnt += rightCnt;
if (cnt == 2) {
lca = root;
}
}
return cnt;
}
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
lca = NULL;
tA = A, tB = B;
findLCA(root);
return lca;
}
};
时间复杂度: O(n)
空间复杂度: O(logn) (考虑到递归的堆栈消耗)
解法2 后序非递归DFS
写了递归的, 自然就想写个非递归的.
思路是:
- 在碰到第一个节点的时候让
LCA_PTR指向当前节点, 真正的LCA一定是*LCA_PTR本身或者上游节点. - 每次路过
*LCA_PTR的父节点的时候,LCA_PTR上移指向父节点. (前序和中序非递归遍历中, 路过就是访问; 后序非递归遍历中, 路过不一定是访问) - 当碰到第二个节点的时候,
LCA_PTR停留的地方就是真正的LCA.
但是写着写着才注意到, 步骤2决定了必须要用后序遍历才行. 因为前序和中序遍历中, 找到目标节点时, 父节点的遍历可能已经结束了.
要注意的是步骤2中的路过, 即
if (lca && root->left == lca || root->right == lca) {
lca = root;
}
应该紧随root = s.top(), 而不是放在"访问当前节点"的地方.
class Solution {
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
TreeNode *lca = NULL;
stack<TreeNode*> s;
TreeNode *prev = NULL;
int cnt = 0;
while (root || !s.empty()) {
while (root) {
s.push(root);
root = root->left;
}
root = s.top();
if (lca && root->left == lca || root->right == lca) {
lca = root;
}
if (!root->right || root->right == prev) {
s.pop();
if (root->val == A->val) {
++cnt;
if (cnt == 1) lca = root;
}
if (root->val == B->val) {
++cnt;
if (cnt == 1) lca = root;
}
if (cnt == 2) return lca;
prev = root;
root = NULL;
} else {
root = root->right;
}
}
return NULL;
}
};
时间复杂度: O(n)
空间复杂度: O(n)
解法3 单链表的交点
当每个节点有指向父节点的指针时可以用这种方法. 题中的TreeNode结构没有parent指针, 用map构造就好了.
class Solution {
private:
map<TreeNode*, TreeNode*> parents;
void buildParents(TreeNode *root) {
if (root->left) {
parents[root->left] = root;
buildParents(root->left);
}
if (root->right) {
parents[root->right] = root;
buildParents(root->right);
}
}
int depth(TreeNode *node) {
int d = 0;
while (node) {
node = parents[node];
++d;
}
return d;
}
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
parents.clear();
parents[root] = NULL;
buildParents(root);
int da = depth(A), db = depth(B);
if (da < db) {
swap(da, db);
swap(A, B);
}
while (da > db) {
A = parents[A];
da--;
}
while (da && A != B) {
A = parents[A];
B = parents[B];
da--;
}
return A;
}
};
时间复杂度: O(n)
空间复杂度: O(n)
解法4 双堆栈
回顾了一下LeetCode上半年前写的代码, 发现当时思路还蛮清晰. 思路类似解法2, 但是多用一个堆栈表示从root到LCA的路径, 好处就是代码更清晰一些, 而且中序遍历即可.
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
stack<TreeNode*> s;
stack<TreeNode*> path;
bool foundFirst = false;
TreeNode *lca = NULL;
while (root || !s.empty()) {
while (root) {
if (!foundFirst) {
path.push(root);
}
s.push(root);
root = root->left;
}
root = s.top();
if (!path.empty() && root == path.top()) {
lca = root;
path.pop();
}
s.pop();
if (root == p || root == q) {
if (foundFirst) {
return lca;
}
foundFirst = true;
}
root = root->right;
}
return NULL;
}
};
时间复杂度: O(n)
空间复杂度: O(n)
解法5 前序递归DFS, 指针
这代码应该是当初看了LeetCode Discuss中的解答写出来的. 相对于解法1, 代码很简洁, 用指针的回传表达是否找到目标节点. 要说缺陷, 就是扫描的点比解法1多一些.
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root || root == p || root == q) return root;
TreeNode *left = lowestCommonAncestor(root->left, p, q), *right = lowestCommonAncestor(root->right, p, q);
return left && right ? root : (left ? left : right);
}
};
时间复杂度: O(n)
空间复杂度: O(logn)
[OJ] Lowest Common Ancestor的更多相关文章
- LeetCode OJ 236. Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- LeetCode OJ 235. Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- LeetCode OJ:Lowest Common Ancestor of a Binary Tree(最近公共祖先)
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- LeetCode OJ:Lowest Common Ancestor of a Binary Search Tree(最浅的公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- 48. 二叉树两结点的最低共同父结点(3种变种情况)[Get lowest common ancestor of binary tree]
[题目] 输入二叉树中的两个结点,输出这两个结点在数中最低的共同父结点. 二叉树的结点定义如下: C++ Code 123456 struct BinaryTreeNode { int ...
- [LeetCode]Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- 数据结构与算法(1)支线任务4——Lowest Common Ancestor of a Binary Tree
题目如下:https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/ Given a binary tree, fin ...
随机推荐
- jBPM开发入门指南
http://blog.csdn.net/eric474470/article/details/7665265 工作流虽然还在不成熟的发展阶段,甚至还没有一个公认的规范标准.但其应用却已经在快速展开, ...
- Apache Avro 与 Thrift 比较
http://www.tbdata.org/archives/1307 Avro和Thrift都是跨语言,基于二进制的高性能的通讯中间件. 它们都提供了数据序列化的功能和RPC服务. 总体功能上类似, ...
- ASP.NET问题处理---targetFramwork=‘4.0’错误
问题原因分析:系统没有下载 .NET framwork 4.0 版本的框架或者有下载但没使用. 解决办法: 打开iis上发布的“应用程序池”,并右键我们所发布的网站: 选择“添加应用程序池”: 最后选 ...
- tomcat启动
http://jingyan.baidu.com/article/c33e3f48a42352ea15cbb5d4.html
- temporary
private void OnAttendeeConnected(object pObjAttendee) { IRDPSRAPIAttendee pAttendee = pObjAttendee a ...
- 那天有个小孩跟我说LINQ(三)转载
1 LINQ TO Objects续2(代码下载) 新建项目 linq_Ch3控制台程序 1.1 操作字符串 ①查找字符串中包含的大写字母,字符串是由多个char类型组 ...
- powerbulider9.0在数据窗口中实现滚动到新添加行
powerbuilder9.0对数据窗口进行增加行操作,然后实现滚动到指定行时,应先滚动到指定行dw_1.scrolltorow( row),然后设置新添加的行为当前行dw_1.setrow( row ...
- 用正则表达式解析XML
import java.util.regex.*; import java.util.*; /** * * <p>Title: Document</p> * * <p&g ...
- 【转帖】客户端通过 HTTP 请求和响应 的 Header 信息总结
请求Header原帖地址:http://technique-digest.iteye.com/blog/1174581 响应Header原帖地址:http://blog.pfan.cn/hurongl ...
- javascript dom编程艺术笔记第三章:DOM操作的5个基本方法
JavaScript的 DOM操作,主要是对DOM这三个字母中D.O.M的操作.D代表的是document(文档),即我们可以使用javascript对文档进行操作,O代表的是object(对象),对 ...