两个n次多项式的相加最直接的方法所需要的时间是O(n),而实现两个n次多项式的乘法的直接方法则需要O(n^2),本章讨论的快速傅里叶变换(FFT),将会将这一过程的时间复杂度降至O(nlogn).同时本章也会给出一些FFT现实应用.

多项式的两种表示形式:

通过上面的推导,我们简单总结一下得到的结论。

而接下来问题的核心是,如果优化求值和插值过程的时间复杂度,求值过程直观的来看,时间复杂度是O(n^2),而插值过程需要解线性方程组,需要的时间复杂度更高。

为了算法的优化,我们需要引入一些复变函数的知识.

下面这个是以n=8为例做出的草图。

容易看到对于一个周期内,k=0,1,2,…,7分别有8个不等的复数解.

以上详细给出了复变函数中的一些知识,需要尤为注意折半引理,这个引理是后面优化算法的核心,也是设计递归算法的核心所在。

4,5行定义了主n次单位根和第一个根,这是为了在后面得到n个n次单位复数根.

8,9行是基于折半引理的递归过程。

10,11,12,13是根据递归“回归”的部分,即根据分治的结果得到母问题的解。13行的设置,结合循环,完成更新w的值的任务。

简单的考察FFT的时间复杂度,有如下等式:

T(n)=2T(n/2)+O(n)=O(nlgn)

《Introduction to Algorithm》-chaper30-多项式与快速傅里叶变换的更多相关文章

  1. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  2. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  3. CF993E Nikita and Order Statistics 多项式卷积 快速傅里叶变换

    题意: 给你一个数组a1~an,对于k=0~n,求出有多少个数组上的区间满足:区间内恰好有k个数比x小.x为一个给定的数.n<=10^5.值域没有意义. 分析: 大神们都说这道题是一个套路题,真 ...

  4. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  5. HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...

  6. 快速傅里叶变换FFT

    多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...

  7. Fast Fourier Transform ——快速傅里叶变换

    问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...

  8. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  9. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

随机推荐

  1. CODEVS 1638 修复公路

    题目描述 Description A地区在地震过后,连接所有村庄的公路都造成了损坏而无法通车.政府派人修复这些公路. 给出A地区的村庄数N,和公路数M,公路是双向的.并告诉你每条公路的连着哪两个村庄, ...

  2. JSON和JSONP,也许你会豁然开朗,含jQuery用例

    前言: 说到AJAX就会不可避免的面临两个问题,第一个是AJAX以何种格式来交换数据?第二个是跨域的需求如何解决?这两个问题目前都有不同的解决方案,比如数据可以用自定义字符串或者用XML来描述,跨域可 ...

  3. edX Devstack 汉化(i18n)

    操练了几日edx Devstack后,发现自己e文还是那么poor,如果和我一样,继续往下看,否则可以轻轻的飘过- 1.运行起 edx Devstack cd /devstack vagrant up ...

  4. protel dxp快捷键大全

    enter——选取或启动 esc——放弃或取消f1——启动在线帮助窗口tab——启动浮动图件的属性窗口pgup——放大窗口显示比例pgdn——缩小窗口显示比例end——刷新屏幕del——删除点取的元件 ...

  5. Unicode编码的熟悉与研究过程(内附全部汉字编码列表)

    我有一个问题是:是不是会有个别汉字无法在Unicode下表示,这种情况下就不能完全显示了? 各种编码查询表:http://bm.kdd.cc/ ---------------------------- ...

  6. MySQL性能调优与架构设计-架构篇

    架构篇(1) 读书笔记 1.Scale(扩展):从数据库来看,就是让数据库能够提供更强的服务能力 ScaleOut: 是通过增加处理节点的方式来提高整体处理能力 ScaleUp: 是通过增加当前处理节 ...

  7. RxJava开发精要1-从.NET到RxJava

    原文出自<RxJava Essentials> 原文作者 : Ivan Morgillo 译文出自 : 开发技术前线 www.devtf.cn 转载声明: 本译文已授权开发者头条享有独家转 ...

  8. 转:Web service是什么?

    作者: 阮一峰 我认为,下一代互联网软件将建立在Web service(也就是"云")的基础上. 我把学习笔记和学习心得,放到网志上,欢迎指正. 今天先写一个最基本的问题,Web ...

  9. Spring 3.x企业应用开发实战(14)----事务

    Spring虽然提供了灵活方便的事务管理功能,但这些功能都是基于底层数据库本身的事务处理机制工作的.要深入了解Spring的事务管理和配置,有必要先对数据库事务的基础知识进行学习. 何为数据库事务 “ ...

  10. 模拟+二分 poj-1019-Number Sequence

    题目链接: http://poj.org/problem?id=1019 题目大意: Sk表示123...k 把S1S2S3...Sk排成一行 比如:112123123412345123456.... ...