poj1039 Pipe【计算几何】
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions:11940 | Accepted: 3730 |
Description

Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These are the upper points of the pipe contour. The bottom points of the pipe contour consist of points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture above). The company wants to find, for each pipe component, the point with maximal x-coordinate that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints are emitting light too). Assume that the light is not bent at the pipe bent points and the bent points do not stop the light beam.
Input
Output
Sample Input
4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0
Sample Output
4.67
Through all the pipe.
Source
题意:
给n个点 构成两条平行的折线
问从管道口出发的光线最远能到达的横坐标
思路:
最远的光线一定是贴着管道的某两个端点走的
现在枚举这两个端点 判断其与后面折线的交点
刚开始没想到判断交点时 可以先判断line 和 line(up[k], down[k])
这样得到的k就是最小的不能达到的k
用这个k就可以拿来算line 和 line(up[k-1], up[k])以及line(down[k -1], down[k])的交点了
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring> using namespace std;
typedef long long int LL; #define zero(x) (((x) > 0? (x) : -(x)) < eps)
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
} struct point{
double x, y;
point(){}
point(double _x, double _y)
{
x = _x;
y = _y;
}
point operator -(const point &b)const
{
return point(x - b.x, y - b.y);
}
double operator ^(const point &b)const
{
return x * b.y - y * b.x;
}
double operator *(const point &b)const
{
return x * b.x + y * b.y;
}
void input()
{
scanf("%lf%lf", &x, &y);
}
}; struct line{
point s, e;
line(){}
line(point _s, point _e)
{
s = _s;
e = _e;
}
//0表示直线重合,1表示平行,2相交
pair<int, point>operator &(const line &b)const
{
point res = s;
if(sgn((s - e) ^ (b.s - b.e)) == ){
if(sgn((s - b.e) ^ (b.s - b.e)) == ){
return make_pair(, res);
}
else return make_pair(, res);
}
double t = ((s - b.s) ^ (b.s - b.e)) / ((s - e) ^ (b.s - b.e));
res.x += (e.x - s.x) * t;
res.y += (e.y - s.y) * t;
return make_pair(, res);
}
}; //判断直线与线段相交
bool seg_inter_line(line l1, line l2)
{
return sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= ;
} int n;
point up[], down[];
int main()
{
while(scanf("%d", &n) != EOF && n != ){
for(int i = ; i < n; i++){
up[i].input();
down[i].x = up[i].x;
down[i].y = up[i].y - 1.0;
} bool flag = false;
double ans = -100000000.0;
int k;
for(int i = ; i < n; i++){
for(int j = i + ; j < n; j++){
for(k = ; k < n; k++){
if(seg_inter_line(line(up[i], down[j]), line(up[k], down[k])) == ){
break;
}
}
if(k >= n){
flag = true;
break;
}
if(k > max(i, j)){
if(seg_inter_line(line(up[i], down[j]), line(up[k - ], up[k]))){
pair<int, point>pr = line(up[i], down[j]) & line(up[k - ], up[k]);
point p = pr.second;
ans = max(ans, p.x);
}
if(seg_inter_line(line(up[i], down[j]), line(down[k - ], down[k]))){
pair<int, point>pr = line(up[i], down[j]) & line(down[k - ], down[k]);
point p = pr.second;
ans = max(ans, p.x);
}
} for(k = ; k < n; k++){
if(seg_inter_line(line(down[i], up[j]), line(up[k], down[k])) == ){
break;
}
}
if(k >= n){
flag = true;
break;
}
if(k > max(i, j)){
if(seg_inter_line(line(down[i], up[j]), line(up[k - ], up[k]))){
pair<int, point>pr = line(down[i], up[j]) & line(up[k - ], up[k]);
point p = pr.second;
ans = max(ans, p.x);
}
if(seg_inter_line(line(down[i], up[j]), line(down[k - ], down[k]))){
pair<int, point>pr = line(down[i], up[j]) & line(down[k - ], down[k]);
point p = pr.second;
ans = max(ans, p.x);
}
}
}
if(flag){
break;
}
}
//cout<<ans<<endl;
if(flag){
printf("Through all the pipe.\n");
}
else{
printf("%.2f\n", ans);
}
}
return ;
}
poj1039 Pipe【计算几何】的更多相关文章
- poj1039 Pipe(计算几何叉积求交点)
F - Pipe Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- POJ1039 Pipe
嘟嘟嘟 大致题意:按顺序给出\(n\)个拐点表示一个管道,注意这些点是管道的上端点,下端点是对应的\((x_i, y_i - 1)\).从管道口射进一束光,问能达到最远的位置的横坐标.若穿过管道,输出 ...
- POJ 1039:Pipe 计算几何
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9773 Accepted: 2984 Description ...
- 杭电ACM分类
杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...
- 转载:hdu 题目分类 (侵删)
转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...
- hdoj Pipe&&南阳oj管道问题&&poj1039(计算几何问题...枚举)
Pipe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- Pipe(点积叉积的应用POJ1039)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9723 Accepted: 2964 Description ...
- 【计算几何初步-代码好看了点线段相交】【HDU2150】Pipe
题目没什么 只是线段相交稍微写的好看了点 Pipe Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- POJ - 1039 Pipe(计算几何)
http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...
随机推荐
- mysql没有my.ini文件
解决方法: 上面的任意一个文件拷贝一份,重命名my.ini.
- 一种是CI(Constructor Injection)构造方法注入,另一种是SI(Set Injection) set 注入
一:这里先说一下DI(Dependency Injection)依赖注入有种表现形式:一种是CI(Constructor Injection)构造方法注入,另一种是SI(Set Injection) ...
- e653. 写入段落文本
In order to change the font of the text, you need to supply an attributed string to the LineBreakMea ...
- TextView不用获取焦点也能实现跑马灯
1.写一个类继承TextView package com.example.tt; import android.content.Context; import android.graphics.Rec ...
- iOS 使用AFNetworking 设置cookie
本问题是由于多账号访问统一服务器时, 由于服务器那边接收到sessionid一样, 故无法区分账号信息. 所以需要在移动端请求的时候重新设置cookie, 步骤如下: 1. 在登录的时候, 先将 re ...
- There are inconsistent line endings in the 'xxx' script. Some are Mac OS X (UNIX) and some are Windows.问题解决
在Window上使用Visual Studio编辑Unity3D脚本时常会出现类似如下警告: 警告 1 There are inconsistent line endings in the 'Asse ...
- 对于MathType中公式与文字错位的问题怎么解决
MathType是强大的数学公式编辑器,与常见的文字处理软件和演示程序配合使用,能够在各种文档中加入复杂的数学公式和符号,可用在编辑数学试卷.书籍.报刊.论文.幻灯演示等方面,是编辑数学资料的得力工具 ...
- linux下mysql 启动命令
1,使用service 启动.关闭MySQL服务 service mysql start service mysql stop service mysql restart 运行上面命令,其实是serv ...
- crc16算法,包括单片机和c#版本
c语言的#include <stdio.h> static short const wCRC16Table[256] = { 0x0000, 0xC0C1, 0xC181 ...
- IIS7以上版本去掉伪静态去掉index.php方法
1,由于从iis7以上的版本httpd.ini文件已不会被解析,将以下的xml文件复制到web.config 的文件中,然后放到网站的根目录即可. <?xml version="1.0 ...