poj1039 Pipe【计算几何】
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions:11940 | Accepted: 3730 |
Description

Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These are the upper points of the pipe contour. The bottom points of the pipe contour consist of points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture above). The company wants to find, for each pipe component, the point with maximal x-coordinate that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints are emitting light too). Assume that the light is not bent at the pipe bent points and the bent points do not stop the light beam.
Input
Output
Sample Input
4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0
Sample Output
4.67
Through all the pipe.
Source
题意:
给n个点 构成两条平行的折线
问从管道口出发的光线最远能到达的横坐标
思路:
最远的光线一定是贴着管道的某两个端点走的
现在枚举这两个端点 判断其与后面折线的交点
刚开始没想到判断交点时 可以先判断line 和 line(up[k], down[k])
这样得到的k就是最小的不能达到的k
用这个k就可以拿来算line 和 line(up[k-1], up[k])以及line(down[k -1], down[k])的交点了
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring> using namespace std;
typedef long long int LL; #define zero(x) (((x) > 0? (x) : -(x)) < eps)
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps) return ;
if(x < ) return -;
else return ;
} struct point{
double x, y;
point(){}
point(double _x, double _y)
{
x = _x;
y = _y;
}
point operator -(const point &b)const
{
return point(x - b.x, y - b.y);
}
double operator ^(const point &b)const
{
return x * b.y - y * b.x;
}
double operator *(const point &b)const
{
return x * b.x + y * b.y;
}
void input()
{
scanf("%lf%lf", &x, &y);
}
}; struct line{
point s, e;
line(){}
line(point _s, point _e)
{
s = _s;
e = _e;
}
//0表示直线重合,1表示平行,2相交
pair<int, point>operator &(const line &b)const
{
point res = s;
if(sgn((s - e) ^ (b.s - b.e)) == ){
if(sgn((s - b.e) ^ (b.s - b.e)) == ){
return make_pair(, res);
}
else return make_pair(, res);
}
double t = ((s - b.s) ^ (b.s - b.e)) / ((s - e) ^ (b.s - b.e));
res.x += (e.x - s.x) * t;
res.y += (e.y - s.y) * t;
return make_pair(, res);
}
}; //判断直线与线段相交
bool seg_inter_line(line l1, line l2)
{
return sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= ;
} int n;
point up[], down[];
int main()
{
while(scanf("%d", &n) != EOF && n != ){
for(int i = ; i < n; i++){
up[i].input();
down[i].x = up[i].x;
down[i].y = up[i].y - 1.0;
} bool flag = false;
double ans = -100000000.0;
int k;
for(int i = ; i < n; i++){
for(int j = i + ; j < n; j++){
for(k = ; k < n; k++){
if(seg_inter_line(line(up[i], down[j]), line(up[k], down[k])) == ){
break;
}
}
if(k >= n){
flag = true;
break;
}
if(k > max(i, j)){
if(seg_inter_line(line(up[i], down[j]), line(up[k - ], up[k]))){
pair<int, point>pr = line(up[i], down[j]) & line(up[k - ], up[k]);
point p = pr.second;
ans = max(ans, p.x);
}
if(seg_inter_line(line(up[i], down[j]), line(down[k - ], down[k]))){
pair<int, point>pr = line(up[i], down[j]) & line(down[k - ], down[k]);
point p = pr.second;
ans = max(ans, p.x);
}
} for(k = ; k < n; k++){
if(seg_inter_line(line(down[i], up[j]), line(up[k], down[k])) == ){
break;
}
}
if(k >= n){
flag = true;
break;
}
if(k > max(i, j)){
if(seg_inter_line(line(down[i], up[j]), line(up[k - ], up[k]))){
pair<int, point>pr = line(down[i], up[j]) & line(up[k - ], up[k]);
point p = pr.second;
ans = max(ans, p.x);
}
if(seg_inter_line(line(down[i], up[j]), line(down[k - ], down[k]))){
pair<int, point>pr = line(down[i], up[j]) & line(down[k - ], down[k]);
point p = pr.second;
ans = max(ans, p.x);
}
}
}
if(flag){
break;
}
}
//cout<<ans<<endl;
if(flag){
printf("Through all the pipe.\n");
}
else{
printf("%.2f\n", ans);
}
}
return ;
}
poj1039 Pipe【计算几何】的更多相关文章
- poj1039 Pipe(计算几何叉积求交点)
F - Pipe Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- POJ1039 Pipe
嘟嘟嘟 大致题意:按顺序给出\(n\)个拐点表示一个管道,注意这些点是管道的上端点,下端点是对应的\((x_i, y_i - 1)\).从管道口射进一束光,问能达到最远的位置的横坐标.若穿过管道,输出 ...
- POJ 1039:Pipe 计算几何
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9773 Accepted: 2984 Description ...
- 杭电ACM分类
杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...
- 转载:hdu 题目分类 (侵删)
转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...
- hdoj Pipe&&南阳oj管道问题&&poj1039(计算几何问题...枚举)
Pipe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- Pipe(点积叉积的应用POJ1039)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9723 Accepted: 2964 Description ...
- 【计算几何初步-代码好看了点线段相交】【HDU2150】Pipe
题目没什么 只是线段相交稍微写的好看了点 Pipe Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- POJ - 1039 Pipe(计算几何)
http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...
随机推荐
- Extracting and composing robust features with denosing autoencoders 论文
这是一篇发表于2008年初的论文. 文章主要讲了利用 denosing autoencoder来学习 robust的中间特征..进上步,说明,利用这个方法,可以初始化神经网络的权值..这就相当于一种非 ...
- 图像边缘检測--OpenCV之cvCanny函数
图像边缘检測--OpenCV之cvCanny函数 分类: C/C++ void cvCanny( const CvArr* image, CvArr* edges, double threshold1 ...
- 【Java面试题】56 在JAVA中如何跳出当前的多重嵌套循环?
在Java中,要想跳出多重循环,可以在外面的循环语句前定义一个标号,然后在里层循环体的代码中使用带有标号的break 语句,即可跳出外层循环.例如, public class xunhuan { pu ...
- SQL Server 查看数据库在数据缓存(data cache)中占用的空间大小
use master go select * from sys.dm_os_buffer_descriptors go --查看数据库在数据缓存(data cache)中占用的空间大小 --由于每个数 ...
- 【Mysql】修改最大连接数
http://www.111cn.net/database/mysql/51934.htm
- myeclipse配置Hadoop插件
每个版本的 hadoop 都有相应版本的 MyEclipse 插件,官网并没有提供插件的jar包下载.在hadoop/src/contrib 目录下有一个 eclipse-plugin 项目,此项目就 ...
- crc16算法,包括单片机和c#版本
c语言的#include <stdio.h> static short const wCRC16Table[256] = { 0x0000, 0xC0C1, 0xC181 ...
- POJ 1038 Bug Integrated Inc(状态压缩DP)
Description Bugs Integrated, Inc. is a major manufacturer of advanced memory chips. They are launchi ...
- 在实际项目开发中keil的调试方法
转载2015-06-14 20:23:04 一.在keilc的调试状态下,如何观察各个片内外设的运行状态?如何修改它们的设置? 在调试状态下,点击Peripherals菜单下的不同外设选项命令,就会 ...
- diff命令的参数详解和实例
diff命令参数: diff - 找出两个文件的不同点 总览 diff [选项] 源文件 目标文件 描述 在最简单的情况是, diff 比较两个文件的内容 (源文件 和 目标文件). 文件名可以是 - ...