题目描述

求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果。


题解

树状数组

傻逼题,离散化后直接使用树状数组统计即可。由于要求本质不同,因此一个数要减去它前一次出现时的贡献(即以它上一次出现的位置为最后一个元素的上升子序列数目)统计到答案中。

由于要包含至少两个元素,因此还需要减掉不同数的数目。

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <algorithm>
#define N 100010
#define mod 1000000007
using namespace std;
int n , a[N] , v[N] , pos[N] , last[N] , val[N] , f[N];
inline void add(int x , int a)
{
int i;
for(i = x ; i <= n ; i += i & -i)
f[i] = (f[i] + a) % mod;
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i)
ans = (ans + f[i]) % mod;
return ans;
}
int main()
{
int i , sum = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , v[i] = a[i];
sort(v + 1 , v + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
a[i] = lower_bound(v + 1 , v + n + 1 , a[i]) - v;
if(!pos[a[i]]) sum ++ ;
last[i] = pos[a[i]] , pos[a[i]] = i;
}
for(i = 1 ; i <= n ; i ++ ) val[i] = query(a[i] - 1) + 1 , add(a[i] , (val[i] - val[last[i]] + mod) % mod);
printf("%d\n" , (query(n) - sum + mod) % mod);
return 0;
}

【bzoj5157】[Tjoi2014]上升子序列 树状数组的更多相关文章

  1. bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)

    5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...

  2. CF452F Permutations/Luogu2757 等差子序列 树状数组、Hash

    传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子 ...

  3. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  4. 【BZOJ2124】等差子序列 树状数组维护hash值

    [BZOJ2124]等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N ...

  5. Maximum Subsequence Sum【最大连续子序列+树状数组解决】

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

  6. BZOJ 3173 最长上升子序列(树状数组+二分+线段树)

    给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...

  7. hdu 5773 The All-purpose Zero 最长上升子序列+树状数组

    题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...

  8. bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)

    3173: [Tjoi2013]最长上升子序列 题目:传送门 题解:  好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...

  9. 洛谷p1637 三元上升子序列(树状数组

    题目描述 Erwin最近对一种叫"thair"的东西巨感兴趣... 在含有n个整数的序列a1,a2......an中, 三个数被称作"thair"当且仅当i&l ...

随机推荐

  1. 【转载】C/C++杂记:深入虚表结构

    原文:C/C++杂记:深入虚表结构 1. 虚表与“虚函数表” 在“C/C++杂记:虚函数的实现的基本原理”一文中曾提到“虚函数表”的概念,只是为了便于理解,事实是:虚函数表并不真的独立存在,它只是虚表 ...

  2. day 4 继承

    1.继承引入,减少代码量 1)版本1: class Animal: '''定义一个动物类''' def eat(self): print("----吃----") def drin ...

  3. bootstrap的Alerts中 可以放置p标签 设置 align="center" 用来设置文本居中

    效果

  4. 转:后台管理UI的选择

    注:文中缺少了ZUI和LAYUI两个. 目录 一.EasyUI 二.DWZ JUI 三.HUI 四.BUI 五.Ace Admin 六.Metronic 七.H+ UI 八.Admin LTE 九.I ...

  5. jenkins自动打包部署linux

    需要用到2个插件. git parameter:用于参数化构建时选择分支. Publish Over SSH:用于上传jar包和操作tomcat 1.先在系统设置添加要连接的linux服务器,使用用户 ...

  6. Maven学习(八)-----Maven依赖机制

    Maven依赖机制 在 Maven 依赖机制的帮助下自动下载所有必需的依赖库,并保持版本升级. 案例分析 让我们看一个案例研究,以了解它是如何工作的.假设你想使用 Log4j 作为项目的日志.这里你要 ...

  7. python全栈开发- 前⽅⾼能-迭代器

    python_day_12 今日主要内容 1, 函数名的应用,第一类对象 函数名可以像变量一样进行使用 1.赋值 2.作为list元素 3.作为参数 4.作为返回值 2, 闭包 内部函数访问外部函数的 ...

  8. devpi 快速入门:上传,测试,推送发行版

    安装 devpi 客户端和服务器端 pip install -U devpi 这将安装devpi-client,devpi-server 和 devpi-web 三个Python PyPi包. 初始化 ...

  9. Bellman-ford 模板

    #include<bits/stdc++.h> const int inf=0x3f3f3f3f; ; struct edge{ int u,v;//两个点 int w; //权值 Edg ...

  10. 高可用Kubernetes集群-9. 部署kubelet

    十一.部署kubelet 接下来两个章节是部署Kube-Node相关的服务,包含:kubelet,kube-proxy. 1. TLS bootstrap用户授权 # kubelet采用TLS Boo ...