hive 处理小文件,减少map数
1、hive.merge.mapfiles,True时会合并map输出。
2、hive.merge.mapredfiles,True时会合并reduce输出。
3、hive.merge.size.per.task,合并操作后的单个文件大小。
4、hive.merge.size.smallfiles.avgsize,当输出文件平均大小小于设定值时,启动合并操作。这一设定只有当hive.merge.mapfiles或hive.merge.mapredfiles设定为true时,才会对相应的操作有效。
5、mapred.reduce.tasks=30; 设置Reduce Task个数
6、hive.exec.compress.output=’false’; 设置数据不作压缩,要是压缩了我们拿出来的文件就只能通过HIVE-JDBC来解析
7、mapred.map.tasks=1200;
8、hive.optimize.skewjoin=true;这个是给join优化的 0.6官方版本好像有个bug悲哀啊
9、hive.groupby.skewindata=true;这个是给groupby优化的
优化案例一:
使用的生产Hive环境的几个参数配置如下:
dfs.block.size=268435456
hive.merge.mapredfiles=true
hive.merge.mapfiles=true
hive.merge.size.per.task=256000000
mapred.map.tasks=2
因为合并小文件默认为true,而dfs.block.size与hive.merge.size.per.task的搭配使得合并后的绝大部分文件都在300MB左右。
CASE 1:
现在我们假设有3个300MB大小的文件,那么goalsize = min(900MB/2,256MB) = 256MB (具体如何计算map数请参见http://blog.sina.com.cn/s/blog_6ff05a2c010178qd.html)
所以整个JOB会有6个map,其中3个map分别处理256MB的数据,还有3个map分别处理44MB的数据。
这时候木桶效应就来了,整个JOB的map阶段的执行时间不是看最短的1个map的执行时间,而是看最长的1个map的执行时间。所以,虽然有3个map分别只处理44MB的数据,可以很快跑完,但它们还是要等待另外3个处理256MB的map。显然,处理256MB的3个map拖了整个JOB的后腿。
CASE 2:
如果我们把mapred.map.tasks设置成6,再来看一下有什么变化:
goalsize = min(900MB/6,256MB) = 150MB
整个JOB同样会分配6个map来处理,每个map处理150MB的数据,非常均匀,谁都不会拖后腿,最合理地分配了资源,执行时间大约为CASE 1的59%(150/256)
案例分析:
虽然mapred.map.tasks从2调整到了6,但是CASE 2并没有比CASE 1多用map资源,同样都是使用6个map。而CASE 2的执行时间约为CASE 1执行时间的59%。
从这个案例可以看出,对mapred.map.tasks进行自动化的优化设置其实是可以很明显地提高作业执行效率的。
案例二(处理小文件):
最近仓库里面新建了一张分区表,数据量大约是12亿行,分区比较多,从2008年7月开始 一天一个分区。
配置了一个任务
对这个表进行group by 的时候 发现启动了2800多个maps .
执行的时间也高大10分钟。
然后我在hdfs文件里面看到 这个表的每个分区里面都有20多个小文件,每个文件都不大 300KB--1MB
之前的hive的参数:
hive.merge.mapfiles=true
hive.merge.mapredfiles=false
hive.merge.rcfile.block.level=true
hive.merge.size.per.task=256000000
hive.merge.smallfiles.avgsize=16000000
hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
mapred.max.split.size=256000000
mapred.min.split.size=1
mapred.min.split.size.per.node=1
mapred.min.split.size.per.rack=1
hive.merge.mapredfiles 这个指的是 在Map-Reduce的任务结束时合并小文件
解决办法:
1.修改参数hive.merge.mapredfiles=true
2.通过map_reduece的办法生成一张新的表 此时生成的文件变成了每个分区一个文件
再次执行group by 发现效率得到了大大的提升。
小结:
正确处理hive小文件 是 控制map数的一个重要环节
处理的不好 会大大影响任务的执行效率
hive 处理小文件,减少map数的更多相关文章
- 合并hive/hdfs小文件
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以 ...
- Hive如何处理小文件问题?
一.小文件是如何产生的 1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小 ...
- Hadoop记录-hive merge小文件
1. Map输入合并小文件对应参数:set mapred.max.split.size=256000000; #每个Map最大输入大小set mapred.min.split.size.per.no ...
- 【转】hive优化之--控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置 ...
- hive优化之------控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的 ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
- hive 的map数和reduce如何确定(转)
转自博客:https://blog.csdn.net/u013385925/article/details/78245011(没找到原创者,该博客也是转发) 一. 控制hive任务中的map ...
- Hive性能优化--map数和reduce数
转自http://superlxw1234.iteye.com/blog/1582880 一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多 ...
- Hive任务优化--控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
随机推荐
- 前端学习笔记之CSS知识汇总
CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素. 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 CSS实例 ...
- Hmtl5 <input>中placeholder属性(新属性)
Hmtl5 <input>中placeholder属性(新属性) 一.定义和用法 placeholder 属性提供可描述输入字段预期值的提示信息(hint). 该提示会在输入字段为空时显示 ...
- Kali视频学习21-25
Kali视频学习21-25 (21)密码攻击之在线攻击工具 一.cewl可以通过爬行网站获取关键信息创建一个密码字典. 二.CAT (Cisco-Auditing-Tool)很小的安全审计工具,扫描C ...
- 【大型web架构】一个大型web系统架构设计和技术选型的讨论摘录
1.数据库压力问题 所有的压力最终都会反映到数据库方面,一定要对数据库有一个整体的规划. 可以按照业务.区域等等特性对数据库进行配置,可以考虑分库.使用rac.分区.分表等等策略,确保数据库能正常的进 ...
- Cuda 9.2 CuDnn7.0 官方文档解读
目录 Cuda 9.2 CuDnn7.0 官方文档解读 准备工作(下载) 显卡驱动重装 CUDA安装 系统要求 处理之前安装的cuda文件 下载的deb安装过程 下载的runfile的安装过程 安装完 ...
- adb 安装软件
一.连接 adb connect 192.168.1.10 输出 connected to 二.查看设备 adb devices 输出 List of devices attached device ...
- python输出日期时间
import datetime base = datetime.datetime.today() , ): print(base + datetime.timedelta(days=x))
- Java 字节的常用封装
一. Java 的字节 byte (字节) 是 Java 中的基本数据类型,一个 byte 包含8个 bit(位),byte 的取值范围是-128到+127. byte 跟 Java 其他基本类型的关 ...
- 2018-2019-2《网络对抗技术》Exp0 Kali安装 Week1
2018-2019-2<网络对抗技术>Exp0 Kali安装 Week1 Kali的安装 设置虚拟机的名称和操作系统 为虚拟机分配虚拟内存,大小为4096M,分配存储空间,大小为25.0G ...
- 10个有趣的Javascript和CSS库
Tailwind CSS Tailwind是用于构建自定义用户界面的实用CSS框架. 每个Tailwind小应用都有多种尺寸,这使得创建响应式界面变得非常简单. 您可以自定义颜色,边框尺寸,字体,阴影 ...