1、hive.merge.mapfiles,True时会合并map输出。
2、hive.merge.mapredfiles,True时会合并reduce输出。
3、hive.merge.size.per.task,合并操作后的单个文件大小。
4、hive.merge.size.smallfiles.avgsize,当输出文件平均大小小于设定值时,启动合并操作。这一设定只有当hive.merge.mapfiles或hive.merge.mapredfiles设定为true时,才会对相应的操作有效。
5、mapred.reduce.tasks=30;  设置Reduce Task个数
6、hive.exec.compress.output=’false’; 设置数据不作压缩,要是压缩了我们拿出来的文件就只能通过HIVE-JDBC来解析
7、mapred.map.tasks=1200;
8、hive.optimize.skewjoin=true;这个是给join优化的 0.6官方版本好像有个bug悲哀啊
9、hive.groupby.skewindata=true;这个是给groupby优化的

优化案例一:

使用的生产Hive环境的几个参数配置如下:

dfs.block.size=268435456

hive.merge.mapredfiles=true

hive.merge.mapfiles=true

hive.merge.size.per.task=256000000

mapred.map.tasks=2

因为合并小文件默认为true,而dfs.block.size与hive.merge.size.per.task的搭配使得合并后的绝大部分文件都在300MB左右。

CASE 1:

现在我们假设有3个300MB大小的文件,那么goalsize = min(900MB/2,256MB) = 256MB (具体如何计算map数请参见http://blog.sina.com.cn/s/blog_6ff05a2c010178qd.html)

所以整个JOB会有6个map,其中3个map分别处理256MB的数据,还有3个map分别处理44MB的数据。

这时候木桶效应就来了,整个JOB的map阶段的执行时间不是看最短的1个map的执行时间,而是看最长的1个map的执行时间。所以,虽然有3个map分别只处理44MB的数据,可以很快跑完,但它们还是要等待另外3个处理256MB的map。显然,处理256MB的3个map拖了整个JOB的后腿。

CASE 2:

如果我们把mapred.map.tasks设置成6,再来看一下有什么变化:

goalsize = min(900MB/6,256MB) = 150MB

整个JOB同样会分配6个map来处理,每个map处理150MB的数据,非常均匀,谁都不会拖后腿,最合理地分配了资源,执行时间大约为CASE 1的59%(150/256)

案例分析:

虽然mapred.map.tasks从2调整到了6,但是CASE 2并没有比CASE 1多用map资源,同样都是使用6个map。而CASE 2的执行时间约为CASE 1执行时间的59%。

从这个案例可以看出,对mapred.map.tasks进行自动化的优化设置其实是可以很明显地提高作业执行效率的。

案例二(处理小文件):

最近仓库里面新建了一张分区表,数据量大约是12亿行,分区比较多,从2008年7月开始 一天一个分区。

配置了一个任务

对这个表进行group by 的时候 发现启动了2800多个maps .

执行的时间也高大10分钟。

然后我在hdfs文件里面看到 这个表的每个分区里面都有20多个小文件,每个文件都不大 300KB--1MB

之前的hive的参数:

hive.merge.mapfiles=true

hive.merge.mapredfiles=false

hive.merge.rcfile.block.level=true

hive.merge.size.per.task=256000000

hive.merge.smallfiles.avgsize=16000000

hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat

mapred.max.split.size=256000000

mapred.min.split.size=1

mapred.min.split.size.per.node=1

mapred.min.split.size.per.rack=1

hive.merge.mapredfiles 这个指的是 在Map-Reduce的任务结束时合并小文件

解决办法:

1.修改参数hive.merge.mapredfiles=true

2.通过map_reduece的办法生成一张新的表 此时生成的文件变成了每个分区一个文件

再次执行group by 发现效率得到了大大的提升。

小结:

正确处理hive小文件 是 控制map数的一个重要环节

处理的不好 会大大影响任务的执行效率

hive 处理小文件,减少map数的更多相关文章

  1. 合并hive/hdfs小文件

    磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以 ...

  2. Hive如何处理小文件问题?

    一.小文件是如何产生的 1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小 ...

  3. Hadoop记录-hive merge小文件

    1. Map输入合并小文件对应参数:set mapred.max.split.size=256000000;  #每个Map最大输入大小set mapred.min.split.size.per.no ...

  4. 【转】hive优化之--控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置 ...

  5. hive优化之------控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的 ...

  6. hive优化之——控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

  7. hive 的map数和reduce如何确定(转)

    转自博客:https://blog.csdn.net/u013385925/article/details/78245011(没找到原创者,该博客也是转发)   一.    控制hive任务中的map ...

  8. Hive性能优化--map数和reduce数

    转自http://superlxw1234.iteye.com/blog/1582880 一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多 ...

  9. Hive任务优化--控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

随机推荐

  1. 前端学习笔记之CSS知识汇总

    CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素. 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 CSS实例 ...

  2. Hmtl5 <input>中placeholder属性(新属性)

    Hmtl5 <input>中placeholder属性(新属性) 一.定义和用法 placeholder 属性提供可描述输入字段预期值的提示信息(hint). 该提示会在输入字段为空时显示 ...

  3. Kali视频学习21-25

    Kali视频学习21-25 (21)密码攻击之在线攻击工具 一.cewl可以通过爬行网站获取关键信息创建一个密码字典. 二.CAT (Cisco-Auditing-Tool)很小的安全审计工具,扫描C ...

  4. 【大型web架构】一个大型web系统架构设计和技术选型的讨论摘录

    1.数据库压力问题 所有的压力最终都会反映到数据库方面,一定要对数据库有一个整体的规划. 可以按照业务.区域等等特性对数据库进行配置,可以考虑分库.使用rac.分区.分表等等策略,确保数据库能正常的进 ...

  5. Cuda 9.2 CuDnn7.0 官方文档解读

    目录 Cuda 9.2 CuDnn7.0 官方文档解读 准备工作(下载) 显卡驱动重装 CUDA安装 系统要求 处理之前安装的cuda文件 下载的deb安装过程 下载的runfile的安装过程 安装完 ...

  6. adb 安装软件

    一.连接 adb connect 192.168.1.10 输出 connected to 二.查看设备 adb devices 输出 List of devices attached device ...

  7. python输出日期时间

    import datetime base = datetime.datetime.today() , ): print(base + datetime.timedelta(days=x))

  8. Java 字节的常用封装

    一. Java 的字节 byte (字节) 是 Java 中的基本数据类型,一个 byte 包含8个 bit(位),byte 的取值范围是-128到+127. byte 跟 Java 其他基本类型的关 ...

  9. 2018-2019-2《网络对抗技术》Exp0 Kali安装 Week1

    2018-2019-2<网络对抗技术>Exp0 Kali安装 Week1 Kali的安装 设置虚拟机的名称和操作系统 为虚拟机分配虚拟内存,大小为4096M,分配存储空间,大小为25.0G ...

  10. 10个有趣的Javascript和CSS库

    Tailwind CSS Tailwind是用于构建自定义用户界面的实用CSS框架. 每个Tailwind小应用都有多种尺寸,这使得创建响应式界面变得非常简单. 您可以自定义颜色,边框尺寸,字体,阴影 ...