codeforces

description

一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值。求方案数。\(n\le3000,n\le10^9\)

sol

可以证明答案是关于\(m\)的一个\(n\)次多项式。我不会证。

如果\(P(x)\)是关于\(x\)的\(n\)次多项式,则有

\[P(x)=\sum_{i=0}^{n}(-1)^{n-i}P(i)\frac{x(x-1)...(x-n)}{(n-i)!i!(x-i)}
\]

可见杜教\(\mbox{PPT}\)《多项式与求和》。

所以只要对\([1,n]\)求答案就可以了,很显然是一个\(O(n^2)\)的\(dp\),所以复杂度是\(O(n^2)\)。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 3005;
const int mod = 1e9+7;
int n,m,nxt[N],head[N],f[N][N],inv[N],ans;
void dfs(int u){
for (int i=1;i<=n;++i) f[u][i]=1;
for (int v=head[u];v;v=nxt[v]){
dfs(v);
for (int i=1;i<=n;++i)
f[u][i]=1ll*f[u][i]*f[v][i]%mod;
}
for (int i=2;i<=n;++i) (f[u][i]+=f[u][i-1])%=mod;
}
int main(){
n=gi();m=gi();inv[0]=inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
for (int i=2,ff;i<=n;++i)
nxt[i]=head[ff=gi()],head[ff]=i;
dfs(1);
if (m<=n) return printf("%d\n",f[1][m]),0;
for (int i=1;i<=n;++i){
int sum=f[1][i];
for (int j=0;j<=n;++j)
if (j!=i) sum=1ll*sum*(m-j)%mod*(i>j?inv[i-j]:mod-inv[j-i])%mod;
(ans+=sum)%=mod;
}
printf("%d\n",ans);return 0;
}

[CF995F]Cowmpany Cowmpensation的更多相关文章

  1. [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]

    题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) ...

  2. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  3. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  4. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  5. codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值

    给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...

  6. Codeforces 995F Cowmpany Cowmpensation - 组合数学

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个棵$n$个点的有根树和整数$D$,给这$n$个点标号,要求每个节点的标号是正整数,且不超过父节点的标号,根节点的标号不得超过D. 很容 ...

  7. Codeforces F. Cowmpany Cowmpensation

    Description 有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值. n<=3000,D<=1e9 题面 Solution ...

  8. 【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)

    传送门 题意: 给出一颗树,每个结点有取值范围\([1,D]\). 现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值. 问有多少种取值方案. 思路: 手画一下发现,对于一颗大小为 ...

  9. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

随机推荐

  1. 4gcc编译器

    gcc编译器(GNU C Compiler) 现在我们所说的 gcc 是 GUN Compiler Collection的缩写,可以支持多种语言编译,比如 C,C++,Java, pascal 等 g ...

  2. Codeforces Round #530 (Div. 2) Solution

    A. Snowball 签. #include <bits/stdc++.h> using namespace std; ], d[]; int main() { while (scanf ...

  3. CCPC 2016-2017, Finals Solution

    A - The Third Cup is Free 水. #include<bits/stdc++.h> using namespace std; ; int n; int arr[max ...

  4. poj1228 Grandpa's Estate

    地址:http://poj.org/problem?id=1228 题目: Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  5. Linux centos7 redis安装教程

    1.下载解压 #下载至/home/install(或windows系统下载后上传) mkdir /home/install cd /home/install wget http://124.205.6 ...

  6. Sybase数据库常用函数

    Sybase数据库常用函数 一.字符串函数 1,ISNULL(EXP1,EXP2,EXP3,...) :返回第一个非空值,用法与COALESCE(exp1,exp2[,exp3...])相同: 2,T ...

  7. Spring Boot与数据

    SpringBoot 着眼于JavaEE! 不仅仅局限于 Mybatis .JDBC. Spring Data JPA Spring Data 项目的目的是为了简化构建基于 Spring 框架应用的数 ...

  8. BZOJ 3064 CPU监控

    题目链接:CPU监控 学习一番线段树的历史标记- 这道题就是区间加法,区间赋值,要询问区间最大值 和 区间历史最大值的最大值. 然后这种题就是在现有标记的基础上多弄一套标记,维护这个点出现过的最大的标 ...

  9. python 判断两个列表是否有公共元素

    def common_data(list1, list2): result = False for x in list1: for y in list2: if x == y: result = Tr ...

  10. SSH防止暴力破解--fail2ban

    一.ssh密钥对无交互登录 实战1:通过密钥进行sshd服务认证 服务端:linl_S    IP:10.0.0.15 客户端:lin_C    IP:10.0.0.16   1)在客户端生成密钥对 ...