codeforces

description

一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值。求方案数。\(n\le3000,n\le10^9\)

sol

可以证明答案是关于\(m\)的一个\(n\)次多项式。我不会证。

如果\(P(x)\)是关于\(x\)的\(n\)次多项式,则有

\[P(x)=\sum_{i=0}^{n}(-1)^{n-i}P(i)\frac{x(x-1)...(x-n)}{(n-i)!i!(x-i)}
\]

可见杜教\(\mbox{PPT}\)《多项式与求和》。

所以只要对\([1,n]\)求答案就可以了,很显然是一个\(O(n^2)\)的\(dp\),所以复杂度是\(O(n^2)\)。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 3005;
const int mod = 1e9+7;
int n,m,nxt[N],head[N],f[N][N],inv[N],ans;
void dfs(int u){
for (int i=1;i<=n;++i) f[u][i]=1;
for (int v=head[u];v;v=nxt[v]){
dfs(v);
for (int i=1;i<=n;++i)
f[u][i]=1ll*f[u][i]*f[v][i]%mod;
}
for (int i=2;i<=n;++i) (f[u][i]+=f[u][i-1])%=mod;
}
int main(){
n=gi();m=gi();inv[0]=inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
for (int i=2,ff;i<=n;++i)
nxt[i]=head[ff=gi()],head[ff]=i;
dfs(1);
if (m<=n) return printf("%d\n",f[1][m]),0;
for (int i=1;i<=n;++i){
int sum=f[1][i];
for (int j=0;j<=n;++j)
if (j!=i) sum=1ll*sum*(m-j)%mod*(i>j?inv[i-j]:mod-inv[j-i])%mod;
(ans+=sum)%=mod;
}
printf("%d\n",ans);return 0;
}

[CF995F]Cowmpany Cowmpensation的更多相关文章

  1. [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]

    题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) ...

  2. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  3. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  4. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  5. codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值

    给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...

  6. Codeforces 995F Cowmpany Cowmpensation - 组合数学

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个棵$n$个点的有根树和整数$D$,给这$n$个点标号,要求每个节点的标号是正整数,且不超过父节点的标号,根节点的标号不得超过D. 很容 ...

  7. Codeforces F. Cowmpany Cowmpensation

    Description 有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值. n<=3000,D<=1e9 题面 Solution ...

  8. 【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)

    传送门 题意: 给出一颗树,每个结点有取值范围\([1,D]\). 现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值. 问有多少种取值方案. 思路: 手画一下发现,对于一颗大小为 ...

  9. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

随机推荐

  1. LabView和DLL中的参数问题

    注意:在LabView中调用DLL函数时,一定要指定对应的参数类型,而不是选择“Adapt to Type”,否则会出错,不知道为什么书上是要选择“Adapt to Type”. 以下做个参考: 转自 ...

  2. GreenOpenPaint的实现(四)放大缩小处理滚动事件

    放大缩小看似简单,实际上还是比较复杂的.所以专门拿出来说明. 缩放这块,主要就是处理m_pDoc->m_scalefactor void CGreenOpenPaintView::OnButto ...

  3. 20145325张梓靖 《Java程序设计》第9周学习总结

    20145325张梓靖 <Java程序设计>第9周学习总结 教材学习内容总结 JDBC Java语言访问数据库的一种规范,是一套API.JDBC (Java Database Connec ...

  4. 【Android】使用BaseAdapter实现复杂的ListView【转】

    本文转载自:http://blog.csdn.net/jueblog/article/details/11857281 步骤 使用BaseAdapter实现复杂的ListView的步骤: 1. 数据你 ...

  5. IAsyncResult接口

    #region 程序集 mscorlib.dll, v4.0.0.0 // C:\Program Files (x86)\Reference Assemblies\Microsoft\Framewor ...

  6. TP中上传文件图片的实现

    GoodsController.class.php控制器页面<?php namespace Admin\Controller; use Think\Controller; class Goods ...

  7. [转]Cryengine渲染引擎剖析

    转篇Napoleon314 大牛的分析,排版好乱,见谅,耐心读,这是个好东西,注意看他自己的实现,是个技术狂人啊,Ogre焕发次时代的光芒啊~~~努力 ------------------------ ...

  8. <<网络是怎样连接的>>笔记第5章 防火墙,缓存服务器

    第5章 服务器防火墙,缓存服务器 部署地点 防火墙结构和原理 通过将请求平均分配给多台服务器来平衡负载 利用缓存服务器分担负载(客户端也可以部署缓存服务器, 缓存服务器用法很多) 内容分发服务(从缓存 ...

  9. javascript 时间与时间戳的转换

    一:时间转时间戳:javascript获得时间戳的方法有五种,都是通过实例化时间对象 new Date() 来进一步获取当前的时间戳 1.var timestamp1 = Date.parse(new ...

  10. Apereo CAS - 1

    1. download  cas 4.2.2 from https://github.com/apereo/cas/releases 2. eclipse import cas 4.2.2 eclip ...