codeforces

description

一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值。求方案数。\(n\le3000,n\le10^9\)

sol

可以证明答案是关于\(m\)的一个\(n\)次多项式。我不会证。

如果\(P(x)\)是关于\(x\)的\(n\)次多项式,则有

\[P(x)=\sum_{i=0}^{n}(-1)^{n-i}P(i)\frac{x(x-1)...(x-n)}{(n-i)!i!(x-i)}
\]

可见杜教\(\mbox{PPT}\)《多项式与求和》。

所以只要对\([1,n]\)求答案就可以了,很显然是一个\(O(n^2)\)的\(dp\),所以复杂度是\(O(n^2)\)。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 3005;
const int mod = 1e9+7;
int n,m,nxt[N],head[N],f[N][N],inv[N],ans;
void dfs(int u){
for (int i=1;i<=n;++i) f[u][i]=1;
for (int v=head[u];v;v=nxt[v]){
dfs(v);
for (int i=1;i<=n;++i)
f[u][i]=1ll*f[u][i]*f[v][i]%mod;
}
for (int i=2;i<=n;++i) (f[u][i]+=f[u][i-1])%=mod;
}
int main(){
n=gi();m=gi();inv[0]=inv[1]=1;
for (int i=2;i<=n;++i) inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
for (int i=2,ff;i<=n;++i)
nxt[i]=head[ff=gi()],head[ff]=i;
dfs(1);
if (m<=n) return printf("%d\n",f[1][m]),0;
for (int i=1;i<=n;++i){
int sum=f[1][i];
for (int j=0;j<=n;++j)
if (j!=i) sum=1ll*sum*(m-j)%mod*(i>j?inv[i-j]:mod-inv[j-i])%mod;
(ans+=sum)%=mod;
}
printf("%d\n",ans);return 0;
}

[CF995F]Cowmpany Cowmpensation的更多相关文章

  1. [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]

    题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) ...

  2. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  3. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  4. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  5. codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值

    给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...

  6. Codeforces 995F Cowmpany Cowmpensation - 组合数学

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个棵$n$个点的有根树和整数$D$,给这$n$个点标号,要求每个节点的标号是正整数,且不超过父节点的标号,根节点的标号不得超过D. 很容 ...

  7. Codeforces F. Cowmpany Cowmpensation

    Description 有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值. n<=3000,D<=1e9 题面 Solution ...

  8. 【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)

    传送门 题意: 给出一颗树,每个结点有取值范围\([1,D]\). 现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值. 问有多少种取值方案. 思路: 手画一下发现,对于一颗大小为 ...

  9. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

随机推荐

  1. Thread的六中状态

    线程共有6种状态:在某一时刻只能是这6种状态之一.这些状态由Thread.State这个枚举类型表示,并且可以通过getState()方法获得当前线程具体的状态类型. NEW:至今尚未启动的线程的状态 ...

  2. 字典树 trie

    Trie树        Trie树,就是字母树.Trie树是多叉树,每个节点为一个字母.其根节点为象征节点(就是说没有含义,但是存在这个节点),从根节点开始建立,每个节点至多为26个子节点(不要我说 ...

  3. 20155333 2016-2017-2 《Java程序设计》第七周学习总结

    20155333 2016-2017-2 <Java程序设计>第七周学习总结 教材学习内容总结 Lambda 教材的引入循序渐近.深入浅出 Lambda去重复,回忆DRY原则 Lambda ...

  4. WebStorm下使用TypeScript

    TypeScript也可使用Visual Studio 进行开发 TypeScript官网地址:(http://www.typescriptlang.org/) 1.先安装WebStorm WebSt ...

  5. 20155201 2016-2017-2 《Java程序设计》第九周学习总结

    20155201 2016-2017-2 <Java程序设计>第九周学习总结 教材学习内容总结 第十六章 整合数据库 JDBC全名JavaDataBaseConnecticity,是Jav ...

  6. NO.1 在Eclipse中安装Maven插件安装详解

    前言 本来是没打算写博客的,作为一个13年毕业的菜鸟,自认为水平太渣写不出什么好文章,但是前些日子看到一篇鼓励性质的文章说,技术人员的成长靠的就是点点滴滴的积累,博客内容不一定包含多么高深的内容,但是 ...

  7. Spring IOC容器的初始化流程

    IOC初始化流程 Resource定位:指对BeanDefinition的资源定位过程.Bean 可能定义在XML中,或者是一个注解,或者是其他形式.这些都被用Resource来定位, 读取Resou ...

  8. TinyURL

    2018-03-09 15:19:04 TinyURL,短地址,或者叫短链接,指的是一种互联网上的技术与服务.此服务可以提供一个非常短小的URL以代替原来的可能较长的URL,将长的URL地址缩短. 用 ...

  9. JSP 指令

    JSP 指令 JSP指令用来设置整个JSP页面相关的属性,如网页的编码方式和脚本语言. 语法格式如下: <%@ directive attribute="value" %&g ...

  10. 《图解Http》 2-6章: 基础,报文,状态码,首部。

    HTTP协议和Cookie 是stateless协议,自身不对请求和响应之间的通信状态进行保存.但随着技术发展,为了实现保存状态的功能,引入了Cookie技术. Cookie在请求和响应报文中写入信息 ...