模拟约瑟夫环

 Roman Roulette 

The historian Flavius Josephus relates how, in the Romano-Jewish conflict  of 67 A.D., the Romans took the town of Jotapata which he was commanding.   Escaping, Jospehus found himself trapped in a cave with 40 companions.  The  Romans discovered his whereabouts and invited him to surrender, but his  companions refused to allow him to do so.  He therefore suggested that they  kill each other, one by one, the order to be decided by lot.  Tradition has it  that the means for effecting the lot was to stand in a circle, and, beginning  at some point, count round, every third person being killed in turn.  The  sole survivor of this process was Josephus, who then surrendered to the  Romans.  Which begs the question: had Josephus previously practised quietly  with 41 stones in a dark corner, or had he calculated mathematically that he  should adopt the 31st position in order to survive?

Having read an account of this gruesome event you become obsessed with  the fear that you will find yourself in a similar situation at some time in  the future.  In order to prepare yourself for such an eventuality you decide  to write a program to run on your hand-held PC which will determine the  position that the counting process should start in order to ensure that you  will be the sole survivor.

In particular, your program should be able to handle the following variation  of the processes described by Josephus.  n > 0 people are initially  arranged in a circle, facing inwards, and numbered from 1 to n.  The  numbering from 1 to n proceeds consecutively in  a clockwise direction.   Your allocated number is 1.  Starting with person number i, counting  starts in a clockwise direction, until we get to person number k (k > 0),  who is promptly killed.  We then proceed to count a further k people in a  clockwise direction, starting with the person immediately to the left of the  victim.  The person number k so selected has the job of burying the  victim, and then returning to the position in the circle that the victim had  previously occupied.  Counting then proceeds from the person to his  immediate left, with the kth person being killed, and so on, until only one  person remains.

For example, when n = 5, and k = 2, and i = 1, the order of execution is  2, 5, 3, and 1.  The survivor is 4.

Input and Output

Your program must read input lines containing values for n and k (in  that order), and for each input line output the number of the person with  which the counting should begin in order to ensure that you are the sole  survivor.  For example, in the above case the safe starting position is 3.   Input will be terminated by a line containing values of 0 for n and k.

Your program may assume a maximum of 100 people taking part in this  event.

Sample Input

1 1
1 5
0 0

Sample Output

1
1

UVa 130 - Roman Roulette的更多相关文章

  1. Roman Roulette(约瑟夫环模拟)

    Roman Roulette Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  2. UVA - 185 Roman Numerals

    题目链接: https://vjudge.net/problem/UVA-185 思路: 剪枝.回溯 注意回溯的时候,是从当前点的下一个开始,而不是从已经遍历的个数点开始!!不然回溯有问题! 思路参考 ...

  3. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  4. python随机数学习笔记

    #coding:utf-8 import random # random.randint(1,10)产生1,10的随机整数 for i in range(1,5): ranint = random.r ...

  5. ascii码所有字符对照表(包含汉字和外国文字)

    http://www.0xaa55.com/thread-398-1-1.html看到了0xaa55的这个帖子,想起了2年前我在51cto发的一个帖子http://down.51cto.com/dat ...

  6. uva 759 - The Return of the Roman Empire

    #include <cstdio> #include <string> #include <map> using namespace std; ; , , , , ...

  7. UVA 590 二十一 Always on the run

     Always on the run Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

  8. UVa 10048: Audiophobia

    这道题要求我们求出图中的给定的两个节点(一个起点一个终点,但这是无向图)之间所有“路径中最大权值”的最小值,这无疑是动态规划. 我开始时想到根据起点和终点用动态规划直接求结果,但最终由于题中S过大,会 ...

  9. [uva] 10067 - Playing with Wheels

    10067 - Playing with Wheels 题目页:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Ite ...

随机推荐

  1. kubernetes deployment

    deployment是k8s中部署应用最常见的一种方式.如果不需要被访问,那么只需要定义deployment即可.如果需要被其他服务访问,那么可以创建一个service与其绑定,通过访问service ...

  2. spring 加载bean过程源码简易解剖(转载)

    这一篇主要是讲用载入bean的过程.其实就是IOC.低调 低调.. 我把重要的都挑出来了.一步步往下看就明白spring载入bean.xml里面bean的原理 . 感觉像候杰的 MFC深入浅出,哈哈. ...

  3. HIVE中的order by操作

    hive中常见的高级查询包括:group by.Order by.join.distribute by.sort by.cluster by.Union all.今天我们来看看order by操作,O ...

  4. 2012关闭ECN

    Windows Server 2012 关闭TCP ECN (2014-03-20 18:22:42) 转载▼ 标签: it 分类: windows

  5. java-JSP脚本的9个内置对象

    http://blog.csdn.net/titilover/article/details/6800782 http://www.importnew.com/19128.html http://ww ...

  6. nodejs系列笔记02---模块路径解析

    模块路径解析规则 参考这篇博客 我们已经知道,require函数支持斜杠(/)或盘符(C:)开头的绝对路径,也支持./开头的相对路径.但这两种路径在模块之间建立了强耦合关系,一旦某个模块文件的存放位置 ...

  7. 【Spring boot】第一个项目 Springboot + mysql + hibernate

    今天公司要做一个小项目,好久没碰项目了(刷题好累...),听说spring boot很火,决定试一试.暂时就从mysql里面读数据好了,使用hiberante. 1.获取jar包. 从http://s ...

  8. *.ashx一般处理程序不能访问Session值的解决方法

    <%@ WebHandler Language="C#" Class="productHandler" %> using System; using ...

  9. hBase官方文档以及HBase基础操作封装类

    HBase 官方文档 0.97 http://abloz.com/hbase/book.html HBase基本操作封装类(以课堂爬虫为例) package cn.crxy.spider.utils; ...

  10. HTML5的表单所有type类型

    1.button:定义可点击的按钮(通常与 JavaScript 一起使用来启动脚本).<br /> <input id="" type="button ...