【learning】01分数规划
## 问题描述
首先分数规划是一类决策性问题
一般形式是:
\]
其中\(f(x)\)和\(g(x)\)都是连续的实值函数,然后要求\(\lambda\)的最大值或最小值
这类问题中,研究较多的是\(01\)分数规划,也就是求
\]
其中\(x_i \in \{0,1\}\),其他条件和普通分数规划一样,求\(\lambda\)的最大或最小值
接下来我们讨论的是\(01\)分数规划
具体求解
求解\(01\)分数规划的问题很重要的一个思想就是二分
某种程度上可以理解为一种二分答案,只是判断的方式稍微有一点点不同
我们处理一下上面的\(\lambda\)的表达式:
\sum(f_i*x_i)&=\lambda \sum(g_i*x_i)\\
\end{aligned}
\]
移一下项变成:
\]
这个就是我们需要的一个式子啦
具体什么意思呢?
以求解表达式的最大值为例,考虑二分最终的答案
我们将最终的答案记为\(ans\),记当前二分到的\(mid\)为\(\lambda'\),那么上面这个表达式应该满足:
1、\(ans<\lambda'\)时,\(max(\frac{\sum (f_i*x_i)}{\sum (g_i*x_i)})=ans<\lambda'\),也就是\(max(\sum(f_i*x_i)-\lambda’\sum(g_i*x_i))<0\)
2、\(ans=\lambda'\)时,则上面这个表达式的值为\(0\)
3、\(ans>\lambda'\)时,则上面这个表达式的值\(>0\)
所以我们要做的就是在一个比较合理的时间内求出\(max(\sum(f_i*x_i)-\lambda’\sum(g_i*x_i))\)(或者\(min\))就好啦
这样的题目往往会跟一些其他的算法结合起来,比如环啊生成树啊之类的
接下来放几道例题帮助理解
例题们
首先是两道相对来说基础一点的:
看到答案的那个形式。。那就分数规划咯。。
我们现在相当于是要求:
\]
这个东西的最大值
其中\(x_{i,j}\in \{0,1\}\)表示\(i\)和\(j\)是否是舞伴
那明显是一个\(01\)分数规划的形式,套用上面讲到的方法,现在问题转变成如何判断
\]
与\(0\)的关系
这里我们可以考虑用费用流来求解,具体建图相对来说还是比较好想的:
男生看成\(1\)到\(n\)号,女生看成\(1+n\)到\(n+n\)号
1、源点\(S\)往\(1\)到\(n\)(男生)都连一条费用为\(0\),流量为\(1\)的边
2、男生\(i\)(也就是\(i\)号点)往女生\(j\)(也就是\(j+n\)号点)连一条费用为\((a_{i,j}-\lambda' b_{i,j})\),流量为\(1\)的边
3、\(1+n\)到\(n+n\)号(女生)往汇点\(T\)连一条费用为\(0\),流量为\(1\)的边
然后大力跑最大费用最大流就好啦
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define ll long long
using namespace std;
const int N=110,inf=2147483647;
const double eps=1e-8;
struct xxx{
int x,y,nxt,r;
double c;
}a[N*N*10+10];
queue<int> q;
int h[N*2],pre[N*2];
double cost[N*2];
bool vis[N*2];
int A[N][N],B[N][N];
int n,m,tot,S,T;
void add(int x,int y,double c,int r);
bool spfa(double &rec);
void build(double mid);
void solve();
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&n);
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
scanf("%d",&A[i][j]);
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
scanf("%d",&B[i][j]);
solve();
}
void add(int x,int y,double c,int r){
//printf("%d %d %.6lf %d\n",x,y,c,r);
a[++tot].y=y; a[tot].x=x; a[tot].nxt=h[x]; h[x]=tot; a[tot].r=r; a[tot].c=c;
a[++tot].y=x; a[tot].x=y; a[tot].nxt=h[y]; h[y]=tot; a[tot].r=0; a[tot].c=-c;
}
bool spfa(double &rec){
while (!q.empty()) q.pop();
int v,u;
q.push(S); cost[S]=0;
pre[S]=-1;
for (int i=S+1;i<=T;++i) cost[i]=-inf,vis[i]=false;
vis[S]=true;
while (!q.empty()){
v=q.front(); q.pop();
for (int i=h[v];i!=-1;i=a[i].nxt){
u=a[i].y;
if (!a[i].r) continue;
if (cost[u]<cost[v]+a[i].c){
cost[u]=cost[v]+a[i].c;
pre[u]=i;
if (!vis[u])
vis[u]=true,q.push(u);
}
}
vis[v]=false;
}
if (cost[T]==-inf) return false;
int flow=inf;
u=T;
while (pre[u]!=-1)
flow=min(flow,a[pre[u]].r),u=a[pre[u]].x;
rec+=1.0*flow*cost[T];
u=T;
while (pre[u]!=-1)
a[pre[u]].r-=flow,a[pre[u]^1].r+=flow,u=a[pre[u]].x;
return true;
}
void build(double mid){
tot=-1;
S=0; T=2*n+1;
for (int i=S;i<=T;++i) h[i]=-1;
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
add(i,j+n,1.0*A[i][j]-mid*B[i][j],1);
for (int i=1;i<=n;++i)
add(S,i,0,1),add(i+n,T,0,1);
}
bool check(double mid){
double rec=0;
build(mid);
while (spfa(rec));
return rec>0;
}
void solve(){
double l=0,r=10000,mid,ans;
while (r-l>eps){
mid=(l+r)*0.5;
if (check(mid)) ans=mid,l=mid;
else r=mid;
}
printf("%.6lf\n",ans);
}
(啊好吧这题是权限题qwq)
题意的话。。简单来说就是:给你一个有向图,每条边有一个边权,每个点有一个点权,求一个环满足\(\frac{\sum 点权}{\sum 边权}\) 最大,路径中至少含有两个点(也就是保证\(\sum\)边权不能为\(0\))
首先我们分析一下最后选出来的环有没有可能是一个复合环
粗略想一下。。如果说是一个复合环的话,那么完全可以通过去掉一些路径变成一个简单环并且使得经过的点不减少
所以最后选出来的肯定是一个简单环
那么问题就转化成了求一个比值最大的简单环,这个就可以用\(01\)分数规划来解决了
那么也就是说我们现在要求一个环的:
\]
与\(0\)的关系
那么就每次建一个新图,把原图中的\((点权-\lambda' 边权)\) 设成新图的边权,然后用spfa判断一下是否存在正环就好了
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1010,M=5010,inf=2147483647;
const double eps=1e-3;
struct xxx{
int y,nxt;
double dis;
}a[M*2];
struct Data{
int x,y,t;
}rec[M];
queue<int> q;
int h[N],val[N],cnt[N];
double cost[N];
bool vis[N];
int n,m,tot,S,T;
void add(int x,int y,double c);
bool spfa();
void build(double mid);
bool check(double mid);
void solve();
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i) scanf("%d",val+i);
for (int i=1;i<=m;++i)
scanf("%d%d%d",&rec[i].x,&rec[i].y,&rec[i].t);
solve();
}
void add(int x,int y,double c){
//printf("%d %d %.2lf\n",x,y,c);
a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot; a[tot].dis=c;
}
bool spfa(){
while (!q.empty()) q.pop();
int u,v;
for (int i=S;i<=T;++i) cost[i]=0,vis[i]=true,q.push(i),cnt[i]=0;
while (!q.empty()){
v=q.front(); q.pop();
for (int i=h[v];i!=-1;i=a[i].nxt){
u=a[i].y;
if (cost[u]<cost[v]+a[i].dis){
cost[u]=cost[v]+a[i].dis;
if (!vis[u]){
q.push(u),vis[u]=true;
++cnt[u];
if (cnt[u]>n) return true;
}
}
}
vis[v]=false;
}
return false;
}
bool check(double mid){
build(mid);
return spfa();
}
void solve(){
double l=0,r=1000,mid;
while (r-l>eps){
mid=(l+r)*0.5;
if (check(mid)) l=mid;
else r=mid;
}
printf("%.2lf\n",l);
}
void build(double mid){
tot=0; S=0; T=n+1;
for (int i=S;i<=T;++i) h[i]=-1;
for (int i=1;i<=m;++i)
add(rec[i].x,rec[i].y,1.0*val[rec[i].x]-1.0*rec[i].t*mid);
}
然后是两道相对来说思考量或者码量大一点的,因为。。篇幅可能会比较长所以新开两篇博来写了,这里就放博客的传送门嗯
总的来说
其实感觉。。\(01\)分数规划更多的是一种转化问题的思想?
运用起来还是很灵活的,可以跟各种东西套在一起。。
大概就是这样吧ovo
【learning】01分数规划的更多相关文章
- POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9703 Accepted: 3299 ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- 【Earthquake, 2001 Open 】 0-1 分数规划
71 奶牛施工队一场地震把约翰家园摧毁了,坚强的约翰决心重建家园.约翰已经修复了 N 个牧场,他需要再修复一些道路把它们连接起来.碰巧的是,奶牛们最近也成立了一个工程队,专门从事道路修复.而然,奶牛 ...
- POJ 2976 Dropping tests 01分数规划
给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...
- 【转】[Algorithm]01分数规划
因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...
- codevs 1183 泥泞的道路 01分数规划
题目链接 题目描述 Description CS有n个小区,并且任意小区之间都有两条单向道路(a到b,b到a)相连.因为最近下了很多暴雨,很多道路都被淹了,不同的道路泥泞程度不同.小A经过对近期天气和 ...
- Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8176 Accepted: 2862 De ...
- POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)
用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一 ...
随机推荐
- JMeter测试WebSocket的经验总结
最近有一个微信聊天系统的项目需要性能测试,既然是测试微信聊天,肯定绕不开websocket接口的测试,首选工具是Jmeter,网上能搜到现成的方法,但是网上提供的jar包往往不是最新的,既然是用最新版 ...
- [Ubuntu] <uptime>命令
uptime 命令 就是查看系统启动时间的,前几个大家应该都很熟悉:当前时间.系统启动时间.正在登陆的用户数 最后的三个数字,分别代表过去 1分钟 5分钟 15分钟 的平均负载(Load Ave ...
- CentOS 7.2二进制安装mysql-5.7.19
官方文档地址:https://dev.mysql.com/doc/refman/5.7/en/binary-installation.html 开始安装 1.下载mysql二进制包 # cd /usr ...
- Linux 安装ActiveMQ(使用Mac远程访问)
阅读本文需要安装JDK 一 ActiveMQ简介 activemq是用java语言编写的一款开源消息总线 activemq是apache出品 activemq消息的传递有两种类型 一种是点对点: 即一 ...
- mac安装pkg 一直“正在验证” 卡着
今天换了新mac, 但是之前wireshark(抓包工具) 不能用了 ,要安装Xquartz. 下载之后一直卡着, 网上找了半天没有解决方法. 最后我重启一下就好了... 重启一下. 2. 15款ma ...
- mysql5.5 升级到 5.7 的坑
1.大概思路,docker 新启一个mysql5.7 端口映射到3307 2. 导出5.5 的.sql文件,导入5.7中 3.测试通过后,可将5.5关闭.5.7端口改回3306 GRANT ALL P ...
- Python常用模块之PIL
官方网址:http://www.pythonware.com/products/pil/index.htm Python Imaging Library (PIL) Python图像库(PIL)将图像 ...
- scrapy-redis+selenium+webdriver解决动态代理ip和user-agent的问题(全网唯一完整代码解决方案)
问题描述:在爬取一些反爬机制做的比较好的网站时,经常会遇见一个问题就网站代码是通过js写的,这种就无法直接使用一般的爬虫工具爬取,这种情况一般有两种解决方案 第一种:把js代码转为html代码,然后再 ...
- arcgis--arcmap导出点的X,Y坐标
arcmap操作的
- git实验
四.实例应用 应用1.现有项目移植到git代管 进入目标项目,进行git初始化: 初始化:git init 修改config:git config -- local user.name '名称' 和 ...