map/reduce

Python内建了map()reduce()函数。

如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念。

我们先看map。map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。

举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

现在,我们用Python代码实现:

>>> def f(x):
... return x * x
...
>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。

你可能会想,不需要map()函数,写一个循环,也可以计算出结果:

L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
L.append(f(n))
print L

的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?

所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

>>> map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9])
['1', '2', '3', '4', '5', '6', '7', '8', '9']

只需要一行代码。

再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。

但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:

>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579

整理成一个str2int的函数就是:

def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
return reduce(fn, map(char2num, s))

还可以用lambda函数进一步简化成:

def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s] def str2int(s):
return reduce(lambda x,y: x*10+y, map(char2num, s))

也就是说,假设Python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!

lambda函数的用法在后面介绍。

练习

利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:['adam', 'LISA', 'barT'],输出:['Adam', 'Lisa', 'Bart']

Python提供的sum()函数可以接受一个list并求和,请编写一个prod()函数,可以接受一个list并利用reduce()求积。

函数式编程(1)-高阶变成(1)-map/reduce的更多相关文章

  1. python 函数式编程:高阶函数,map/reduce

    python 函数式编程:高阶函数,map/reduce #函数式编程 #函数式编程一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数 #(一)高阶函数 f=abs f print ...

  2. python_08 函数式编程、高阶函数、map、filter、reduce函数、内置函数

    函数式编程 编程方法论: 1.面向过程 找到解决问题的入口,按照一个固定的流程去模拟解决问题的流程 (1).搜索目标,用户输入(配偶要求),按照要求到数据结构内检索合适的任务 (2)表白,表白成功进入 ...

  3. Learning Python 012 函数式编程 1 高阶函数

    Python 函数式编程 1 高阶函数 高阶函数 Q:什么是高阶函数? A:一个函数接收另一个函数作为参数,这种函数就称之为高阶函数. 简单举个例子: def add(x, y, f): return ...

  4. 高阶函数 filter map reduce

    const app=new Vue({ el:'#app', data:{ books:[{ id:1, name:"算法导论", data: '2006-1', price:39 ...

  5. Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊

    函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计 ...

  6. (转)Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)

    原文:https://www.cnblogs.com/chenwolong/p/reduce.html 函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数 ...

  7. python学习笔记1 -- 函数式编程之高阶函数 map 和reduce

    我用我自己,就是高阶函数,直接表现就是函数可以作为另一个函数的参数,也可以作为返回值 首先一个知识点是 函数的表现形式,印象中的是def  fw(参数)这种方式定义一个函数 python有很多的内置函 ...

  8. Python3学习之路~3.2 递归、函数式编程、高阶函数、匿名函数、嵌套函数

    1 递归 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. def calc(n): print(n) if int(n / 2) == 0: return n r ...

  9. python函数式编程之高阶函数学习

    基本概念 函数式编程,是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量.因此,任意一个函数,只要输入确定,输出就确定的这种函数我们称之为纯函数,我们称这种函数没有副作用.而允许使用 ...

  10. 小白的Python之路 day3 函数式编程,高阶函数

    函数式编程介绍   函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的 ...

随机推荐

  1. JAVA学习笔记--迭代器

    迭代器(Iterator)是一种设计模式.它是一个对象,它的工作是遍历并选择序列中的对象,而客户端程序员不必知道或关心该序列底层的结构.创建迭代器的代价小,因而迭代器通常被称为轻量级对象. 一.Ite ...

  2. Sublime Text 3高效实用快捷键

    2017-11-27 16:18:48 Sublime Text 3 高效实用快捷键 Sublime Text 3 软件及注册码 官网下载链接在这里,有时候会很神奇的上不去,可能是因为被Q了,可能就是 ...

  3. 4.openldap创建索引

    1.索引的意义 提高对Openldap目录树的查询速度 提高性能 减轻对服务器的压力 2.搜索索引 ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn= ...

  4. (转)一篇写的简明易懂的logging模块

    转:http://kenby.iteye.com/blog/1162698 一.从一个使用场景开始 开发一个日志系统, 既要把日志输出到控制台, 还要写入日志文件 import logging # 创 ...

  5. git实验

    四.实例应用 应用1.现有项目移植到git代管 进入目标项目,进行git初始化: 初始化:git init 修改config:git config -- local user.name '名称'  和 ...

  6. react native组件的生命周期

    react native组件的生命周期 一.当页面第一次加载时,会依次调用: constructor() componentWillMount(): 这个函数调用时机是在组件创建,并初始化了状态之后, ...

  7. php爬虫学习笔记1 PHP Simple HTML DOM Parser

    常用爬虫. 0. Snoopy是什么? (下载snoopy)   Snoopy是一个php类,用来模仿web浏览器的功能,它能完成获取网页内容和发送表单的任务.   Snoopy的一些特点:   * ...

  8. PSP Daily软件Alpha版本——基于NABCD评论,及改进建议

    1.根据(不限于)NABCD评论作品的选题: 此软件的用户人群较为明确,即:用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜在用户还有未来该课堂的学生和需要用PSP方法记录任务完 ...

  9. Android:有关下拉菜单导航的学习(供自己参考)

    Android:有关==下拉菜单导航==的学习 因为先前的学习都没想着记录自己的学习历程,所以该博客才那么迟才开始写. 内容: ==下拉菜单导航== 学习网站:android Spinner控件详解 ...

  10. 团队作业4——第一次项目冲刺(Alpha版本)第二次

    一.会议内容 各人进行下一步工作 发现沟通流程问题并解决 二.各人工作 成员 计划任务 遇见难题 贡献比 塗家瑜(组长) 后端逻辑处理 无 1 张新磊 数据库搭建 无 1 姚燕彬 测试计划编写 无 1 ...