用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)
最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题。
GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题。不过我想顺便多学习一些有关 SVD 的知识。所以就没直接使用 gsl_fit_linear 函数。
SVD 分解的一些基本概念
关于 SVD 有两篇不错的科普文:
- A Singularly Valuable Decomposition: The SVD of a Matrix
- We Recommend a Singular Value Decomposition
建议大家找来读读,这两篇文章似乎都已经有人翻译成中文了。
所谓 SVD,就是把一个矩阵 Am×n 分解为三个特殊矩阵 Um×n、Sn×n、Vn×n 的乘积。
上面式子中的 T 表示矩阵的转置。分解之后的这三个矩阵还要满足些特殊条件,其中 Um×n 和 Vn×n 是正交矩阵,也就是满足:
矩阵 S 是对角矩阵,只有主对角线上的元素非 0。
因为矩阵 Um×n、Sn×n、Vn×n 的都具有很好的性质,所以这样的分解可以更好的帮助我们了解原始矩阵 A 的性质。
举例来说,如果矩阵 A 是个满秩方阵,那么 A 是可逆的。A 的逆可以写为:
这里 V 和 U 因为是正交矩阵,所以 V−1=VT, U−1=UT。S 是对角矩阵,求逆也很简单,就是把主对角线上每个元素取个倒数而已。
GSL 中的相关函数
gsl 中提供了好几个函数来计算 SVD:
- gsl_linalg_SV_decomp 这个是最基本的,使用 Golub-Reinsch SVD 算法,一般我们用这个就够了。
- gsl_linalg_SV_decomp_mod 这个是改进后的 Golub-Reinsch SVD 算法,当 M≫N 时比 Golub-Reinsch SVD 算法要快。
- gsl_linalg_SV_decomp_jacobi 这个算法用到了 Jacobi 正交化,号称计算结果比 Golub-Reinsch SVD 算法要更准确。
除此之外,还有个 gsl_linalg_SV_solve 函数。这个就是利用 SVD 的结果来求解线性代数方程组的。
把这几个函数组合一下就可以合成一个求解线性代数方程组 A⋅x=b的函数了。
下面是函数代码:
void linearSolve_SVD(const gsl_matrix * A, const gsl_vector * b, gsl_vector * x)
{
int rows = A->size1;
int cols = A->size2;
gsl_vector * work = gsl_vector_alloc (cols);
gsl_vector * S = gsl_vector_alloc (cols);
gsl_matrix * U = gsl_matrix_alloc(rows, cols);;
gsl_matrix * V = gsl_matrix_alloc(cols, cols);
gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
gsl_linalg_SV_decomp( U, V, S, work );
gsl_linalg_SV_solve ( U, V, S, b, x );
gsl_vector_free(work);
gsl_vector_free(S);
gsl_matrix_free(V);
gsl_matrix_free(U);
}
当 A 是满秩方阵时,计算出来的 x 就是我们一般意义上的方程的解。
下面举一个具体的例子:
下面是测试代码:
void test1()
{
double a_data[] = {1.4, 2.1, 2.1, 7.4, 9.6,
1.6, 1.5, 1.1, 0.7, 5.0,
3.8, 8.0, 9.6, 5.4, 8.8,
4.6, 8.2, 8.4, 0.4, 8.0,
2.6, 2.9, 0.1, 9.9, 7.7};
gsl_matrix_view A = gsl_matrix_view_array (a_data, 5, 5);
double b_data[] = {1.1, 1.6, 4.7, 9.1, 0.1};
gsl_vector_view b = gsl_vector_view_array (b_data, 5);
gsl_vector * x = gsl_vector_alloc (5);
linearSolve_SVD(&A.matrix, &b.vector, x);
gsl_vector_fprintf (stdout, x, "%f");
qDebug() << "";
gsl_vector * bb = gsl_vector_alloc (5);
gsl_blas_dgemv (CblasNoTrans, 1, &A.matrix, x, 0, bb);
gsl_vector_fprintf (stdout, bb, "%f");
}
输出结果如下:
-5.208566
5.736694
-2.537472
-1.029814
0.968151
1.100000
1.600000
4.700000
9.100000
0.100000
可以看出计算结果还是很准确的。
当 A 的行数大于列数时求得的是最小二乘意义下的解,也就是 ||A⋅x−b||2 最小的解。下面给个例子:
测试代码如下:
void test3()
{
double a_data[] = {2, 4,
3, -5,
1, 2};
gsl_matrix_view A = gsl_matrix_view_array (a_data, 3, 2);
double b_data[] = {11, 3, 6};
gsl_vector_view b = gsl_vector_view_array (b_data, 3);
gsl_vector * x = gsl_vector_alloc (2);
linearSolve_SVD(&A.matrix, &b.vector, x);
gsl_vector_fprintf (stdout, x, "%f");
qDebug() << "";
gsl_vector * bb = gsl_vector_alloc (3);
gsl_blas_dgemv (CblasNoTrans, 1, &A.matrix, x, 0, bb);
gsl_vector_fprintf (stdout, bb, "%f");
}
计算结果如下:
3.090909
1.254545
11.200000
3.000000
5.600000
如果 A 不满秩,那么 x 是不唯一的。这时算出来的其中一个解。 下面给个例子:
方程很简单,口算就可以出结果,这个方程的解是:
下面用我们的代码计算一下。
void test4()
{
double a_data[] = {1, 2,
2, 4};
gsl_matrix_view A = gsl_matrix_view_array (a_data, 2, 2);
double b_data[] = {3, 6};
gsl_vector_view b = gsl_vector_view_array (b_data, 2);
gsl_vector * x = gsl_vector_alloc (2);
linearSolve_SVD(&A.matrix, &b.vector, x);
gsl_vector_fprintf (stdout, x, "%f");
qDebug() << "";
gsl_vector * bb = gsl_vector_alloc (2);
gsl_blas_dgemv (CblasNoTrans, 1, &A.matrix, x, 0, bb);
gsl_vector_fprintf (stdout, bb, "%f");
}
结果是:
-3.400000
3.200000
3.000000
6.000000
可以验算,(−3.4,3.2)T 确实是方程的一个解。其实用 SVD 我们可以求出方程的全部解的,但是我们需要 S 和 V 的值,所以上面的 linearSolve_SVD 函数就不够用了。
下面我们将 SVD 相关的功能封装成一个类,以方便我们提取 S 和 V 的值。
另外,当我们一个 A 有多组 x 需要求解时,也只需要计算一次 SVD 分解,用下面的类能减少很多计算量。
头文件如下:
#ifndef GSLSINGULARVALUEDECOMPOSITION_H
#define GSLSINGULARVALUEDECOMPOSITION_H
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_errno.h>
void linearSolve_SVD(const gsl_matrix * A, const gsl_vector * b, gsl_vector * x);
class GslSVD
{
public:
GslSVD();
~GslSVD();
int SV_decomp(const gsl_matrix * A);
int SV_decomp_mod(const gsl_matrix * A);
int SV_decomp_jacobi (gsl_matrix * A);
int SV_solve(const gsl_vector *b, gsl_vector *x);
gsl_vector * getVectorS();
gsl_matrix * getMatrixU();
gsl_matrix * getMatrixV();
int trimVectorS(double abseps);
private:
gsl_vector * S;
gsl_matrix * U;
gsl_matrix * V;
void alloc_suv(int rows, int cols);
};
#endif // GSLSINGULARVALUEDECOMPOSITION_H
cpp 文件如下:
#include "gsl_SVD.h"
void linearSolve_SVD(const gsl_matrix * A, const gsl_vector * b, gsl_vector * x)
{
int rows = A->size1;
int cols = A->size2;
gsl_vector * work = gsl_vector_alloc (cols);
gsl_vector * S = gsl_vector_alloc (cols);
gsl_matrix * U = gsl_matrix_alloc(rows, cols);;
gsl_matrix * V = gsl_matrix_alloc(cols, cols);
gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
gsl_linalg_SV_decomp( U, V, S, work );
gsl_linalg_SV_solve ( U, V, S, b, x );
gsl_vector_free(work);
gsl_vector_free(S);
gsl_matrix_free(V);
gsl_matrix_free(U);
}
int GslSVD::trimVectorS(double abseps)
{
int count = 0;
for(int i = 0; i < S->size; i++)
{
if(fabs(gsl_vector_get(S, i)) < abseps)
{
count ++;
gsl_vector_set(S, i, 0);
}
}
return count;
}
gsl_vector * GslSVD::getVectorS()
{
if(S == NULL) return NULL;
gsl_vector * s = gsl_vector_alloc(S->size);
gsl_vector_memcpy(s, S);
return s;
}
gsl_matrix * GslSVD::getMatrixU()
{
if(U == NULL) return NULL;
gsl_matrix * u = gsl_matrix_alloc(U->size1, U->size2);
gsl_matrix_memcpy(u, U);
return u;
}
gsl_matrix * GslSVD::getMatrixV()
{
if(V == NULL) return NULL;
gsl_matrix * v = gsl_matrix_alloc(V->size1, V->size2);
gsl_matrix_memcpy(v, V);
return v;
}
GslSVD::GslSVD()
{
S = NULL;
U = NULL;
V = NULL;
}
void GslSVD::alloc_suv(int rows, int cols)
{
if( S != NULL )
{
gsl_vector_free(S);
gsl_matrix_free(U);
gsl_matrix_free(V);
}
S = gsl_vector_alloc (cols);
U = gsl_matrix_alloc(rows, cols);
V = gsl_matrix_alloc(cols, cols);
}
int GslSVD::SV_decomp(const gsl_matrix * A)
{
int rows = A->size1;
int cols = A->size2;
gsl_vector * work = gsl_vector_alloc (cols);
alloc_suv(rows, cols);
gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
int ret = gsl_linalg_SV_decomp( U, V, S, work );
gsl_vector_free(work);
return ret;
}
int GslSVD::SV_decomp_mod(const gsl_matrix * A)
{
int rows = A->size1;
int cols = A->size2;
gsl_vector * work = gsl_vector_alloc (cols);
gsl_matrix *X = gsl_matrix_alloc(cols, cols);
alloc_suv(rows, cols);
gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
int ret = gsl_linalg_SV_decomp_mod( U, X, V, S, work );
gsl_matrix_free(X);
gsl_vector_free(work);
return ret;
}
int GslSVD::SV_decomp_jacobi (gsl_matrix * A)
{
int rows = A->size1;
int cols = A->size2;
alloc_suv(rows, cols);
gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
int ret = gsl_linalg_SV_decomp_jacobi( U, V, S );
return ret;
}
int GslSVD::SV_solve(const gsl_vector *b, gsl_vector *x)
{
if(U != NULL)
{
return gsl_linalg_SV_solve (U, V, S, b, x);
}
return -1;
}
GslSVD::~GslSVD()
{
if(S != NULL)
{
gsl_vector_free(S);
gsl_matrix_free(V);
gsl_matrix_free(U);
}
}
下面用这个类来计算一下刚才的问题:
void test5()
{
double a_data[] = {1, 2,
2, 4};
gsl_matrix_view A = gsl_matrix_view_array (a_data, 2, 2);
GslSVD svd;
svd.SV_decomp(&A.matrix);
puts("S = ");
gsl_vector_fprintf (stdout, svd.getVectorS(), "%f");
puts("\nV = ");
gsl_matrix_fprintf (stdout, svd.getMatrixV(), "%f");
double b_data[] = {3, 6};
gsl_vector_view b = gsl_vector_view_array (b_data, 2);
gsl_vector * x = gsl_vector_alloc (2);
svd.SV_solve(b, x);
puts("\nx = ");
gsl_vector_fprintf (stdout, x, "%f");
}
结果如下:
S =
5.000000
0.000000
V =
-0.447214
-0.894427
-0.894427
0.447214
x =
-3.400000
3.200000
我们注意到 S 的第二个元素是 0,这表明 V 的对应列(第二列)是方程解的自由向量。所以我们方程的解可以写为:
大家可以验证一下,这个解是正确的。
另外,我写的类中还提供了一个 trimVectorS(double abseps) 函数,利用这个函数,可以将 S 所有小于 abseps 的项直接替换为 0。之所以提供了这个函数,是因为由于计算误差等的影响,S 中一些本应该是 0 的项可能计算出的结果不是 0。用这个函数就可以解决这个问题。还有些矩阵,条件数很大,方程呈现病态,用这个函数也能解决些问题。
好了,就先写这么多。希望对大家有用。
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)的更多相关文章
- 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 2
接上一篇... 下面我们将 SVD 相关的功能封装成一个类,以方便我们提取 S 和 V 的值. 另外,当我们一个 A 有多组 x 需要求解时,也只需要计算一次 SVD 分解,用下面的类能减少很多计算量 ...
- Python最小二乘法解非线性超定方程组
求解非线性超定方程组,网上搜到的大多是线性方程组的最小二乘解法,对于非线性方程组无济于事. 这里分享一种方法:SciPy库的scipy.optimize.leastsq函数. import numpy ...
- 小游戏 Lights Out (关灯) 的求解 —— 异或方程组
Author : Evensgn Blog Link : http://www.cnblogs.com/JoeFan/ Article Link : http://www.cnblogs.com/J ...
- 高斯消元法求解异或方程组: cojs.tk 539.//BZOJ 1770 牛棚的灯
高斯消元求解异或方程组: 比较不错的一篇文章:http://blog.sina.com.cn/s/blog_51cea4040100g7hl.html cojs.tk 539. 牛棚的灯 ★★☆ ...
- 【poj1830-开关问题】高斯消元求解异或方程组
第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
- 矩阵奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题
- 矩阵的奇异值分解(SVD)(理论)
矩阵的奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言 ...
- 奇异值分解(SVD)和最小二乘解在解齐次线性超定方程中的应用
奇异值分解,是在A不为方阵时的对特征值分解的一种拓展.奇异值和特征值的重要意义相似,都是为了提取出矩阵的主要特征. 对于齐次线性方程 A*X =0;当A的秩大于列数时,就需要求解最小二乘解,在||X| ...
随机推荐
- jq模仿h5 placeholder效果
$(".pay-license input").on("input propertychange blur",function(){ if($(this).va ...
- BZOJ 2038 小Z的袜子(hose) 莫队算法模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目大意: 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中 ...
- POJ-2452 Sticks Problem 二分+RMQ
题目链接: https://cn.vjudge.net/problem/POJ-2452 题目大意: 给出一个数组a,求最大的j-i满足 i<j && a[i] ... a[j] ...
- 修改微软RDP远程桌面端口
远程桌面服务所使用的通信协议是Microsoft定义RDP(Remote Desktop Protocol)协议,RDP协议的TCP通信端口号是3389. 有时候为了安全起见,或者其他的需要,我们常需 ...
- PAT——1030. 完美数列
给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列. 现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完美数列. ...
- LoadRunner调用java函数测试oracle
LoadRunner调用java函数测试oracle 测试oracle的方法有很多,可以使用loadrunner的oracle协议直接调用oracle进行测试,也可以调用开发的java程序对oracl ...
- Linux环境下部署SpringBoot项目
1.在pom文件中添加maven插件 <build> <plugins> <plugin> <groupid>org.springframework.b ...
- TestNG+Maven+IDEA 自动化测试(一) 环境搭建
示例代码: https://github.com/ryan255/TestNG-Demo 所需环境: 1. IDEA UItimate 2. JDK 3. Maven 创建工程 一开始创建一个普通的m ...
- centos7字体中英文转化
[root@localhost oracle]#vi /etc/locate.conf,把里面的内容改为: 转化为英文: LANG="en_US.UTF-8"LANGUAGE=&q ...
- office365离线安装
office版本是在线安装,每次安装比较麻烦,所以还是离线安装合适,这里推荐一篇博文https://www.cnblogs.com/Devopser/p/7919245.html 但是由于部署工具变化 ...