[arc065E]Manhattan Compass[曼哈顿距离和切比雪夫距离转换]
Description
Solution
题目要求的是曼达顿距离,对于每个点(x,y),我们把它变为(x-y,x+y),就可以转换成求切比雪夫距离了。
证明如下:$max(\left | (x_{p}-y_{p})-(x_{q}-y_{q}) \right |,\left | (x_{p}+y_{p})-(x_{q}+y_{q}) \right |)=max(\left | x_{p}-x_{q}\pm(y_{p}-y_{q}) \right | )=\left | x_{p}-x_{q} \right |+\left | y_{p}-y_{q} \right |$
设点a,b距离为d。
针对每个点i,讨论y值比y[i]恰好小d,且x与x[i]的差比d小的点的个数(记为cnt[i])并把这些点放到并查集内。(记得判重)
交换x,y值再重复一次上述步骤。
最后就同一个联通块算一下cnt的和就ok。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
vector<pair<ll,int> >v;
int n,a,b,x,y;
ll d;
struct P{ll x,y,id;
friend bool operator <(P a,P b){return a.x==b.x?a.y<b.y:a.x<b.x;}}p[];
int dis(P a,P b){return abs(a.x-b.x)+abs(a.y-b.y);}
int fa[];ll sz[];
int find_f(int x){return fa[x]==x?x:fa[x]=find_f(fa[x]);}
int cnt[];
void solve(int now)
{
vector<pair<ll,int> >::iterator _last,it;
v.clear();
int pre=;bool _is=;
for (int i=;i<=n;i++)
{
if (p[i].x!=p[i-].x) v.clear(),_is=;
while (p[i].x-p[pre].x>d&&pre<=n) pre++;
while (p[i].x-p[pre].x==d&&pre<=n) v.push_back(make_pair(p[pre].y,p[pre].id)),++pre;
it=lower_bound(v.begin(),v.end(),make_pair(p[i].y-d+now,));
if (_is){_is=;_last=v.begin();}
_last=max(_last,it);
if (it==v.end()||it->first >p[i].y+d-now) continue;
for(;_last!=v.end()&&_last->first<=p[i].y+d-now;_last++)
{
x=find_f(_last->second);y=find_f(p[i].id);
if (x!=y) fa[x]=y;
}
cnt[p[i].id]+=(_last-it);
if (_last!=it) _last--;
}
}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for (int i=;i<=n;i++) scanf("%d%d",&p[i].x,&p[i].y);
d=dis(p[a],p[b]);
for (int i=;i<=n;i++) {fa[i]=i;x=p[i].x;y=p[i].y;p[i].x=x-y;p[i].y=x+y;p[i].id=i;}
sort(p+,p+n+);
solve();
for (int i=;i<=n;i++) swap(p[i].x,p[i].y);
sort(p+,p+n+);
solve();
for (int i=;i<=n;i++) sz[find_f(i)]+=cnt[i];
cout<<sz[find_f(a)];
}
[arc065E]Manhattan Compass[曼哈顿距离和切比雪夫距离转换]的更多相关文章
- Bzoj 3170[Tjoi 2013]松鼠聚会 曼哈顿距离与切比雪夫距离
3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1318 Solved: 664[Submit][Stat ...
- [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)
[BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...
- Hdu 4312-Meeting point-2——哈夫曼距离与切比雪夫距离
题意 从 $n$ 个点中选择一点,使得其他点到其的切比雪夫距离最小($0 < n \leq 1e5$). 分析 定理:$(x_1, y_1)$ 与 $(x_2, y_2)$ 的曼哈顿距离等于 $ ...
- Hdu 4312-Meeting point-2 切比雪夫距离,曼哈顿距离,前缀和
题目: http://acm.hdu.edu.cn/showproblem.php?pid=4312 Meeting point-2 Time Limit: 2000/1000 MS (Java/Ot ...
- BZOJ 3170 松鼠聚会(切比雪夫距离转曼哈顿距离)
题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目 ...
- BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)
题目链接 将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离. 反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\f ...
- HDU 4312 Meeting point-2(切比雪夫距离转曼哈顿距离)
http://acm.hdu.edu.cn/showproblem.php?pid=4312 题意:在上一题的基础上,由四个方向改为了八个方向. 思路: 引用自http://blog.csdn.net ...
- bzoj 3170 Tjoi 2013 松鼠聚会 曼哈顿距离&&切比雪夫距离
因为曼哈顿距离很好求,所以要把每个点的坐标转换一下. 转自:http://blog.csdn.net/slongle_amazing/article/details/50911504 题解 两个点的切 ...
- 曼哈顿距离、欧几里得距离、闵氏距离(p→∞为切比雪夫距离)
曼哈顿距离: 是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和. 曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离, ...
随机推荐
- SpringBoot接口返回去掉空字段
返回的接口中存在值为null或者空的字段过滤掉 @Configuration public class JacksonConfig { @Bean @Primary @ConditionalOnMis ...
- python:定时任务模块schedule
1.安装 pip install schedule 2.文档 https://schedule.readthedocs.io/en/stable/faq.html#how-to-execute-job ...
- 【[HEOI2016/TJOI2016]序列】
压行真漂亮 首先这肯定是一个\(dp\)了 设\(dp_i\)表示\(i\)结尾的最长不下降子序列的长度 显然我们要找一个\(j\)来转移 也就是\(dp_i=max(dp_j+1)\) 那么什么样的 ...
- 【JavaScript】颜色选择器
颜色空间RGB与HSV(HSL)的转换 好文推荐:http://blog.csdn.net/jiangxinyu/article/details/8000999 从 HSV 到 RGB 的转换 类似的 ...
- js 键盘点击事件
回车键(Enter)的触发事件 js 代码如下: document.onkeydown = function (e) { if (!e) e = window.event; if ((e.keyCo ...
- 利用matplotlib绘画出二特征的散点图
实例的所有数据来源于吴恩达教授的机器学习数据,特此感谢.数据源可以前往course下载. 本文主要目地在于绘画二维的散点图,至于scatter的用法可以参见我之前的博客. import pandas ...
- PAT——1035. 插入与归并
根据维基百科的定义: 插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列.每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置.如此迭代直到全部元素有序. 归并排序进行如下迭 ...
- 深度包检测(DPI)详细介绍
目录 简介 背景 流量识别 常用功能 具体功能 做法 特征识别 架构举例 部署方式 串接方式 并接方式 存在问题 检测引擎举例 参考文献 简介 DPI(Deep Packet Inspection)深 ...
- multiprocessing进程开发RuntimeError
windows环境下multiprocessing报如下异常信息: RuntimeError: An attempt has been made to start a new process befo ...
- Python基础 条件判断和循环
pyhton if 语句 if 语句后接表达式,然后用: 表示代码块. age = 20 if age >= 18: print 'your age is', age print 'adult' ...