题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101

莫比乌斯反演

1101: [POI2007]Zap

设 \(f(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)=i\) 的对数
那么答案就是 \(f(d)\)

构造一个函数 \(g(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)|i\) 的对数

于是 \(g\) 与 \(f\) 满足关系式
\(g(i)=\sum\limits_{i|k}f(k)\)
满足莫比乌斯反演的第二种情况
于是套公式反演得
\(f(i)=\sum\limits_{i|k}\mu(\frac {k}{i})g(k)\)
对于 \(g(i)\) 考虑 \(gcd(x,y)|i\) 即 \(x\) 与 \(y\) 都有 \(i\) 这个因子
那么 \(x\) 有 \([\frac{a}{i}]\) 个取值 \(y\) 有 \([\frac{b}{i}]\) 个取值
\(g(i)=[\frac{a}{i}]\times[\frac{b}{i}]\)
于是答案
\[
\begin{aligned}
ans=f(d)&=\sum\limits_{d|k}\mu(\frac {k}{d})g(k)\\
&=\sum\limits_{d|k}\mu(\frac {k}{d})[\frac{a}{k}]\times[\frac{b}{k}]
\end{aligned}
\]
设 \(t=\frac{k}{d},k=d\times t;\)
\[
\begin{aligned}
ans=\sum\limits_{t=1}^{min([\frac{a}{d}],[\frac{b}{d}])}\mu(t)[\frac{\frac{a}{t}}{d}][\frac{\frac{b}{t}}{d}]
\end{aligned}
\]
筛一下 \(\mu(i)\)
于是就可以做到 \(O(n\times t)\)
但是效率不行呀
观察到一个形似 \(\sum\limits_{i=1}^{i\le n}[\frac{x}{i}]\) 的式子。
整除分块:(选自他人博客,但是找不到了博客地址了QAQ)
整除分块可以做到 \(O(\sqrt{n}):\)

正确性证明

开始时左端点是 \(1\) 显然是没有问题的,而以后的每一次操作 \(L=R+1\),因此,我们只需要证明每次的 \(R\) 都为正确的即可。
首先\([\frac {n}{i}]\)一定是属于该除数区间的,所以我们只需要证明该数为区间上界。

反证法。设X=\([\frac {n}{i}]\)不是我们想要得到的 \(R\),那么至少有 \(X+1\)属于答案区间。

于是有\([\frac{N}{X+1}⌋=i\),因为是下取整,于是有\(N≥i\times (X+1)\),于是有 \([\frac{N}{i}]≥([\frac{i×(X+1)}{i}]=X+1)\)

而根据定义有 \(X=[\frac{N}{i}]\),于是有 \(X≥X+1\),与事实相悖。

复杂度证明

分情况讨论。

当所选除数 \(\le \sqrt{N}\) 时,显然这一部分的除数区间个数不会超过 \(\sqrt{N}\) 个。

当所选除数\(\geq \sqrt{N}\) 时,得到的商 \(\le \sqrt{N}\),商不超过 \(\sqrt{N}\) 种,所以除数区间也不会超过 \(\sqrt{N}\) 个。

于是总时间复杂度 \(O(\sqrt{N})\)。

Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块的更多相关文章

  1. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  2. [P4450] 双亲数 - 莫比乌斯反演,整除分块

    模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...

  3. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  4. 【BZOJ1101】Zap [莫比乌斯反演]

    Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...

  5. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  6. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  7. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  8. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  9. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

随机推荐

  1. sencha touch 入门系列 (九) sencha touch 布局layout

    布局用来描述你应用程序中组件的大小和位置,在sencha touch中,为我们提供了下面几种布局: 1.HBox: HBox及horizontal box布局,我们这里将其称为水平布局,下面是一段演示 ...

  2. 【BZOJ3203】[Sdoi2013]保护出题人 二分+凸包

    [BZOJ3203][Sdoi2013]保护出题人 Description Input 第一行两个空格隔开的正整数n和d,分别表示关数和相邻僵尸间的距离.接下来n行每行两个空格隔开的正整数,第i + ...

  3. 【BZOJ3037/2068】创世纪/[Poi2004]SZP 树形DP

    [BZOJ3037]创世纪 Description applepi手里有一本书<创世纪>,里面记录了这样一个故事……上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放 ...

  4. Android dialog 全屏

    Android中让Dialog全屏: 一.在style中定义样式: <?xml version="1.0" encoding="utf-8"?> & ...

  5. mybatis按姓名或手机号搜索

    1.AND ((USER_NAME LIKE '%'||#{searchKey}||'%') OR (MOBILE_PHONE LIKE '%'||#{searchKey}||'%'))2. < ...

  6. Qt::浅谈信号槽连接,参数在多线程中的使用

    Qt的信号槽有五种连接方式定义在enum Qt::ConnectionType,下面简单介绍 Qt::AutoConnection:自动判断连接方式,如果信号发送对象和执行槽对象在同一线程,那么等于Q ...

  7. 验证url的正则

    一. '/@(?i)\b((?:[a-z][\w-]+:(?:/{1,3}|[a-z0-9%])|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()& ...

  8. (4.21)SQL Server数据库启动过程(用户数据库加载过程的疑难杂症)

    转自:指尖流淌 http://www.cnblogs.com/zhijianliutang/p/4100103.html SQL Server数据库启动过程(用户数据库加载过程的疑难杂症) 前言 本篇 ...

  9. 翻译:Bing地图瓦片体系

    Bing Maps Tile System Bing地图瓦片体系 原文链接:http://msdn.microsoft.com/en-us/library/bb259689.aspx Bing Map ...

  10. Flask系列之源码分析(一)

    目录: 涉及知识点 Flask框架原理 简单示例 路由系统原理源码分析 请求流程简单源码分析 响应流程简单源码分析 session简单源码分析 涉及知识点 1.装饰器 闭包思想 def wapper( ...