UVA 10428 - The Roots(牛顿迭代法)
UVA 10428 - The Roots
题意:给定一个一元多次方程组,要求求出全部根
思路:利用牛顿迭代法 xn+1=xn−f(xn)/f′(xn),不断迭代就能求出较为精确的值,然后因为有的方程可能有多解,每次解得一个X后,就把原式子除以(x
- X),这个是肯定能整除的。把方程降阶然后继续用牛顿迭代法直到求出全部解
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int N = 10;
int n;
double a[N]; double cal(double *f, double x, int n) {
double ans = 0;
for (int i = 0; i <= n; i++)
ans += f[i] * pow(x, i);
return ans;
} double newton(double *f, int n) {
double fd[N];
for (int i = 0; i < n; i++)
fd[i] = f[i + 1] * (i + 1);
double x = -25.0;
for (int i = 0; i < 100; i++)
x = x - cal(f, x, n) / cal(fd, x, n - 1);
return x;
} void tra(double *f, double x, int n) {
f[n + 1] = 0;
for (int i = n; i > 0; i--)
f[i] = f[i + 1] * x + f[i];
for (int i = 0; i < n; i++)
f[i] = f[i + 1];
} void solve() {
for (int i = 0; i < n; i++) {
double x = newton(a, n - i);
printf(" %.4lf", x);
tra(a, x, n - i);
}
} int main() {
int cas = 0;
while (~scanf("%d", &n) && n) {
for (int i = n; i >= 0; i--)
scanf("%lf", &a[i]);
printf("Equation %d:", ++cas);
solve();
printf("\n");
}
return 0;
}
UVA 10428 - The Roots(牛顿迭代法)的更多相关文章
- NOIP2001 一元三次方程求解[导数+牛顿迭代法]
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
- Atitit 迭代法 “二分法”和“牛顿迭代法 attilax总结
Atitit 迭代法 "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1. ...
- 牛顿迭代法实现平方根函数sqrt
转自利用牛顿迭代法自己写平方根函数sqrt 给定一个正数a,不用库函数求其平方根. 设其平方根为x,则有x2=a,即x2-a=0.设函数f(x)= x2-a,则可得图示红色的函数曲线.在曲线上任取一点 ...
- sqrt (x) 牛顿迭代法
参考: 0开方 是 0 1的开方式 1 2的开方式 1.4 3.的开方=(1.4+3/1.4)/2 牛顿迭代法:学习自 http://blog.csdn.net/youwuwei2012/articl ...
- 【清橙A1094】【牛顿迭代法】牛顿迭代法求方程的根
问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图) ...
- 基于visual Studio2013解决C语言竞赛题之0422牛顿迭代法
题目
- 牛顿迭代法解指数方程(aX + e^x解 = b )
高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解, ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...
- sqrt()平方根计算函数的实现2——牛顿迭代法
牛顿迭代法: 牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特 ...
随机推荐
- 联通积分兑换的Q币怎么兑换到QQ上
可登录联通积分商城http://jf.10010.com 查询和兑换Q币, 1,通过联通积分商城自主兑换,提交订单扣除积分成功后,10010端口将自动为您下发验证码短信. 2,在有效期内登陆Q币充值 ...
- AC日记——中庸之道 codevs 2021
2021 中庸之道 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 给定一个长度为N的序列 ...
- UVA - 1205 Color a Tree
大意就是给你一颗树,每个点有一个权值w[i],求一个排列使得 所有的父亲都在儿子前面 并且排列的权值最小. 排列的权值在这里定义为 Σ i * w[p[i]] ,其中p[i] 是排列第i个位置的元 ...
- Data structure basics - Java Implementation
Stack & Queue Implementations FixedCapacityQueue package cn.edu.tsinghua.stat.mid_term; import j ...
- fauxbar.bak
{"options": { "almostdone":"0", "backup_searchEngines":" ...
- Poj2826 An Easy Problem
呵呵哒.WA了无数次,一开始想的办法最终发现都有缺陷.首先需要知道: 1)线段不相交,一定面积为0 2)有一条线段与X轴平行,面积一定为0 3)线段相交,但是能接水的三角形上面线段把下面的线段完全覆盖 ...
- SFTP & FTP Upload
简述 >> FTP: 1. Install FTP service on Linux(Red Hat) as root user [root]# yum install ftp 2. ...
- mybatis配置mapperLocations多个路径
<property name="mapperLocations"> <array> <value>classpath*:/mybatis-con ...
- 【音乐App】—— Vue-music 项目学习笔记:播放器内置组件开发(二)
前言:以下内容均为学习慕课网高级实战课程的实践爬坑笔记. 项目github地址:https://github.com/66Web/ljq_vue_music,欢迎Star. 播放模式切换 歌词滚动显示 ...
- Maven项目如何将自定义文件添加到META-INF目录下
Maven项目如何将自定义文件添加到META-INF目录下 学习了:https://blog.csdn.net/yangjiegreat/article/details/78698655 <bu ...