UVA 10428 - The Roots(牛顿迭代法)
UVA 10428 - The Roots
题意:给定一个一元多次方程组,要求求出全部根
思路:利用牛顿迭代法 xn+1=xn−f(xn)/f′(xn),不断迭代就能求出较为精确的值,然后因为有的方程可能有多解,每次解得一个X后,就把原式子除以(x
- X),这个是肯定能整除的。把方程降阶然后继续用牛顿迭代法直到求出全部解
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int N = 10;
int n;
double a[N]; double cal(double *f, double x, int n) {
double ans = 0;
for (int i = 0; i <= n; i++)
ans += f[i] * pow(x, i);
return ans;
} double newton(double *f, int n) {
double fd[N];
for (int i = 0; i < n; i++)
fd[i] = f[i + 1] * (i + 1);
double x = -25.0;
for (int i = 0; i < 100; i++)
x = x - cal(f, x, n) / cal(fd, x, n - 1);
return x;
} void tra(double *f, double x, int n) {
f[n + 1] = 0;
for (int i = n; i > 0; i--)
f[i] = f[i + 1] * x + f[i];
for (int i = 0; i < n; i++)
f[i] = f[i + 1];
} void solve() {
for (int i = 0; i < n; i++) {
double x = newton(a, n - i);
printf(" %.4lf", x);
tra(a, x, n - i);
}
} int main() {
int cas = 0;
while (~scanf("%d", &n) && n) {
for (int i = n; i >= 0; i--)
scanf("%lf", &a[i]);
printf("Equation %d:", ++cas);
solve();
printf("\n");
}
return 0;
}
UVA 10428 - The Roots(牛顿迭代法)的更多相关文章
- NOIP2001 一元三次方程求解[导数+牛顿迭代法]
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
- Atitit 迭代法 “二分法”和“牛顿迭代法 attilax总结
Atitit 迭代法 "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1. ...
- 牛顿迭代法实现平方根函数sqrt
转自利用牛顿迭代法自己写平方根函数sqrt 给定一个正数a,不用库函数求其平方根. 设其平方根为x,则有x2=a,即x2-a=0.设函数f(x)= x2-a,则可得图示红色的函数曲线.在曲线上任取一点 ...
- sqrt (x) 牛顿迭代法
参考: 0开方 是 0 1的开方式 1 2的开方式 1.4 3.的开方=(1.4+3/1.4)/2 牛顿迭代法:学习自 http://blog.csdn.net/youwuwei2012/articl ...
- 【清橙A1094】【牛顿迭代法】牛顿迭代法求方程的根
问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图) ...
- 基于visual Studio2013解决C语言竞赛题之0422牛顿迭代法
题目
- 牛顿迭代法解指数方程(aX + e^x解 = b )
高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解, ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...
- sqrt()平方根计算函数的实现2——牛顿迭代法
牛顿迭代法: 牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特 ...
随机推荐
- javascript 表格隔行换色
用到的知识点: 获取表格元素 tbody 和 rows都是有索引的 这里我们只有一组tbody所以 索引是0 偶数行 索引取余2为0 奇数行 索引取余2不为0 通过 遍历行索引设置相应的颜色. < ...
- win10+anaconda3+pytorch安装
安装条件:win10+anaconda3+tf-gpu+pytorch 安装完tf-gpu后,安装pytorch. pytorch采用conda安装:见 https://ptorch.com/news ...
- CS Academy Round #65 Count Arrays (DP)
题目链接 Count Arrays 题意 给定$n$和$m$个区间.若一个长度为$n$的$01$序列满足对于每一个给定的区间中至少有一个位置是$0$, 那么这个$01$序列满足条件.求有多少满足条 ...
- 对CSDN的理性吐槽
CSDN博客网站首页挂了....从使用CSDN博客以来,大大小小的故障出过十几次.........再这样的话我都要对这个网站失去信心了
- Android学习--ListView
这篇文章用于总结自己这两天学到的安卓的ListView和RecyclerView 的笔记,以及从我这个iOS开发者的角度去理解和学习这两个控件,会比较一下他们个iOS中那些控件是一致的,可以用来对比的 ...
- poj1185 [NOI2001]炮兵阵地
http://poj.org/problem?id=1185 三维装压dp,压缩上一行状态与本行状态,枚举上两行状态转移 第一维可以滚掉,实际复杂度只枚举符合情况的情况,每行状态不会超过60并非$2^ ...
- Graphs (Cakewalk) 1 B - medium
Discription Bear Limak examines a social network. Its main functionality is that two members can bec ...
- ETL之Kettle
Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行. 说白了就是,很有必要去理解一般ETL工具必备的特性和功能,这样才更好的掌握Kettle的使用. ...
- WinSCP介绍、安装、使用(转)
http://blog.csdn.net/liang19890820/article/details/49700931 前言 如果说XManager通过Xshell.Xftp可以很方便的进行远程管理, ...
- android 内存泄漏出现的情况
非静态内部类的静态实例由于内部类默认持有外部类的引用,而静态实例属于类.所以,当外部类被销毁时,内部类仍然持有外部类的引用,致使外部类无法被GC回收.因此造成内存泄露. 类的静态变量持有大数据对象静态 ...