题目链接 Sandy and Nuts

题意大概就是给出限制条件求出在该限制条件下树的种数。

#include <bits/stdc++.h>

using namespace std;

#define REP(i, n)	for (int i(0); i <  (n); ++i)
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 15;
const int maxS = 10010;
const int maxQ = 210; int n, m, q, all;
LL f[N][maxS];
int a[maxQ], b[maxQ], c[maxQ];
int e[N][N]; inline in(int i, int S){ return (S >> i) & 1; } LL DP(int u, int S){
LL &ret = f[u][S];
if (ret != -1) return ret; ret = 0;
int St = S ^ (1 << u);
int t; for (t = 0; t < n; ++t) if (in(t, St)) break; for (int __S = St; __S; (--__S) &= St) if (in(t, __S)){
bool flag = true;
REP(i, n) if (i != u){
REP(j, n) if (j != u){
if (e[i][j] && (in(i, __S) ^ in(j, __S))){
flag = false;
break;
}
} if (!flag) break;
} if (!flag) continue; int v, cnt = 0;
REP(i, n){
if (e[u][i] && in(i, __S)){
++cnt;
v = i;
}
} if (cnt >= 2) continue; rep(i, 1, q){
if (c[i] == u && in(a[i], __S) && in(b[i], __S)){
flag = false; break;
} if (in(c[i], __S) && (!in(a[i], __S) || !in(b[i], __S))){
flag = false; break;
}
} if (!flag) continue; if (cnt == 1) ret += DP(v, __S) * DP(u, S ^ __S);
else REP(v, n) if (in(v, __S)) ret += DP(v, __S) * DP(u, S ^ __S);
} return ret;
} int main(){ scanf("%d%d%d", &n, &m, &q);
rep(i, 1, m){
int x, y;
scanf("%d%d", &x, &y);
--x, --y;
e[x][y] = e[y][x] = 1;
} rep(i, 1, q){
scanf("%d%d%d", a + i, b + i, c + i);
--a[i], --b[i], --c[i];
} all = (1 << n) - 1;
memset(f, -1, sizeof f);
REP(i, n) f[i][1 << i] = 1; return 0 * printf("%lld\n", DP(0, all));
}

Codeforces 599E Sandy and Nuts(状压DP)的更多相关文章

  1. CodeForces 599E Sandy and Nuts 状压DP

    题意: 有一棵\(n(1 \leq n \leq 13)\)个节点的树,节点的标号为\(1 \sim n\),它的根节点是\(1\). 现在已知它的\(m(0 \leq m < n)\)条边,和 ...

  2. Codeforces Round #363 LRU(概率 状压DP)

    状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...

  3. codeforces 8C. Looking for Order 状压dp

    题目链接 给n个物品的坐标, 和一个包裹的位置, 包裹不能移动. 每次最多可以拿两个物品, 然后将它们放到包里, 求将所有物品放到包里所需走的最小路程. 直接状压dp就好了. #include < ...

  4. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  5. Codeforces 895C Square Subsets(状压DP 或 异或线性基)

    题目链接  Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...

  6. 【题解】codeforces 8c Looking for Order 状压dp

    题目描述 Lena喜欢秩序井然的生活.一天,她要去上大学了.突然,她发现整个房间乱糟糟的--她的手提包里的物品都散落在了地上.她想把所有的物品都放回她的手提包.但是,这里有一点问题:她一次最多只能拿两 ...

  7. Codeforces 895C Square Subsets:状压dp【组合数结论】

    题目链接:http://codeforces.com/problemset/problem/895/C 题意: 给你n个数a[i].(n <= 10^5, 1 <= a[i] <= ...

  8. codeforces 580D Kefa and Dishes(状压dp)

    题意:给定n个菜,每个菜都有一个价值,给定k个规则,每个规则描述吃菜的顺序:i j w,按照先吃i接着吃j,可以多增加w的价值.问如果吃m个菜,最大价值是多大.其中n<=18 思路:一看n这么小 ...

  9. Codeforces 342D Xenia and Dominoes 状压dp

    码就完事了. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define ...

随机推荐

  1. 装逼图片旋转合成demo

    测试背景 bg.jpg 测试图片 a.jpg 结果示例 代码demo <?php $bgImgFileName = 'bg.jpg'; $a = 'a.jpg'; // 初始化 $src = i ...

  2. Python使用ORM控制MongoDB(MongoEngine)

    简介: MongoEngine是一个对象文档映射器(ODM),相当于一个基于SQL的对象关系映射器(ORM) pymongo来操作MongoDB数据库,但是直接把对于数据库的操作代码都写在脚本中,这会 ...

  3. LightOj:1265-Island of Survival

    Island of Survival Time Limit: 2 second(s) Memory Limit: 32 MB Program Description You are in a real ...

  4. 离线安装eclipse maven插件

    最近用到maven,所以按照官网http://www.eclipse.org/m2e/的教程http://download.eclipse.org/technology/m2e/releases/,在 ...

  5. C++实现Behavioral - Observer模式 (转)

    转http://patmusing.blog.163.com/blog/static/13583496020101501923571/ 也称为Dependents或Publish-Subscribe模 ...

  6. Python属性描述符(一)

    描述符是对多个属性运用相同存取逻辑的一种方式,,是实现了特性协议的类,这个协议包括了__get__.__set__和__delete__方法.property类实现了完整的描述符协议.通常,可以只实现 ...

  7. Xpath - Xpath定位

     selenium 提供的xpath定位方法名为:find_element_by_xpath(xpath表达式) Xpath基本定位语法: / 绝对定位,从根节点选取 // 相对定位,从匹配选择的当前 ...

  8. [svn学习篇]svn使用教程

    http://www.cnblogs.com/longshiyVip/p/4905901.html http://blog.csdn.net/dily3825002/article/details/6 ...

  9. Frequent values(ST)

    描述 You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to ...

  10. [整理]菜鸟教程:docker使用笔记

    - docker # 查看 docker stats 指令的具体使用方法 - docker stats --help # 运行一个web应用 - docker pull training/webapp ...