Discription

Input

第一行一个正整数,表示数据组数据 ,接下来T行
每行三个正整数N,K,P

Output

T行,每行输出一个整数,表示结果

Sample Input

1
1 2 3

Sample Output

1

Hint

上个周学的一个 dark技巧: 利用单位根来 求一个多项式某个数倍数次数的项的系数和。

首先设 w[k] 为 复数域下的k次单位根,那么它满足的一个性质是: 当且仅当 k|i 的时候 ,w[k]^i = 1;其他时候都不为1。

这个有什么用处呢???

假设我们要求 杨辉三角的第n行的 是3的倍数的列的和的时候, 我们显然可以列出式子:ANS = ∑ [k|i] * C(n,i).

然后我们把 w[0]~w[k-1] 分别带进 (1+x)^n 这个多项式里,展开之后求和,显然 x^i前的系数是 C(n,i) ,并且  对于 是k的倍数的i ,w[0]^i + w[1]^i +....+w[k-1]^i = k;

而对于不是k倍数的i,我们用等比数列求一下和发现系数正好就是0。所以我们把这k个多项式的和再除以k就是要求的东西了。

对于本题其实是一样的,只不过我们把数的多项式换成矩阵的多项式就好啦。而且因为 p mod k =1,所以直接找原根然后就可以直接求k次单位根啦。

(无意间达成了一个成就2333  )

/*
利用单位根的性质,可以求出多项式某个数倍数的次数项的系数和
(I + xA)^n = ∑C(n,i) * x^i * A^i ,其中A是斐波那契数列系数矩阵
*/
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int K,P,T,root,num,d[233],ans;
inline int add(int x,int y){ x+=y; return x>=P?x-P:x;}
inline int mul(int x,int y,const int ha){ return x*(ll)y%ha;}
inline int ksm(int x,int y){ int an=1; for(;y;y>>=1,x=mul(x,x,P)) if(y&1) an=mul(an,x,P); return an;}
struct node{
int a[2][2];
inline void clear(){ memset(a,0,sizeof(a));}
inline void BASE(){ clear(); a[0][0]=a[1][1]=1;}
node operator *(const int &u)const{
node r;
r.a[0][0]=mul(a[0][0],u,P);
r.a[0][1]=mul(a[0][1],u,P);
r.a[1][0]=mul(a[1][0],u,P);
r.a[1][1]=mul(a[1][1],u,P);
return r;
}
node operator +(const node &u)const{
node r;
r.a[0][0]=add(a[0][0],u.a[0][0]);
r.a[0][1]=add(a[0][1],u.a[0][1]);
r.a[1][0]=add(a[1][0],u.a[1][0]);
r.a[1][1]=add(a[1][1],u.a[1][1]);
return r;
}
node operator *(const node &u)const{
node r;
r.a[0][0]=add(mul(a[0][0],u.a[0][0],P),mul(a[0][1],u.a[1][0],P));
r.a[0][1]=add(mul(a[0][1],u.a[1][1],P),mul(a[0][0],u.a[0][1],P));
r.a[1][0]=add(mul(a[1][0],u.a[0][0],P),mul(a[1][1],u.a[1][0],P));
r.a[1][1]=add(mul(a[1][1],u.a[1][1],P),mul(a[1][0],u.a[0][1],P));
return r;
}
}X,ANS; inline void GD(){
int Q=P-1; num=0;
for(int i=2;i*(ll)i<=Q;i++) if(!(Q%i)){
d[++num]=i;
while(!(Q%i)) Q/=i;
if(Q==1) break;
}
if(Q!=1) d[++num]=Q;
for(int i=1;i<=num;i++) d[i]=(P-1)/d[i];
} inline void findroot(){
GD();
for(int i=2;i;i++){
bool flag=1;
for(int j=1;j<=num;j++) if(ksm(i,d[j])==1){ flag=0; break;} if(flag){ root=i; break;}
}
} inline void calc(ll C){
for(int i=0,omega=ksm(root,(P-1)/K),now=1;i<K;i++,now=mul(now,omega,P)){
X.a[0][1]=X.a[1][1]=X.a[1][0]=1,X.a[0][0]=0;
X=X*now,X.a[0][0]=add(X.a[0][0],1),X.a[1][1]=add(X.a[1][1],1); ll O=C; ANS.BASE();
for(;O;O>>=1,X=X*X) if(O&1) ANS=ANS*X; ans=add(ans,add(ANS.a[0][0],ANS.a[1][0]));
}
ans=mul(ans,ksm(K,P-2),P);
} inline void solve(){
ll N; ans=0;
scanf("%lld%d%d",&N,&K,&P);
findroot();
calc(N);
printf("%d\n",ans);
} int main(){
scanf("%d",&T);
while(T--) solve();
return 0;
}

  

bzoj 3328 : PYXFIB的更多相关文章

  1. BZOJ 3328: PYXFIB 解题报告

    BZOJ 3328: PYXFIB 题意 给定\(n,p,k(1\le n\le 10^{18},1\le k\le 20000,1\le p\le 10^9,p \ is \ prime,k|(p- ...

  2. bzoj 3328: PYXFIB 数论

    3328: PYXFIB Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 130  Solved: 41[Submit][Status][Discuss ...

  3. bzoj 3328 PYXFIB——单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演主要就是有 \( [k|n] = \frac{1}{k}\sum\limit ...

  4. bzoj 3328 PYXFIB —— 单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演,主要用到了 \( [k|n] = \frac{1}{k} \sum\lim ...

  5. BZOJ 3328: PYXFIB 单位根反演+矩阵乘法+二项式定理

    如果写过 LJJ 学二项式那道题的话这道题就不难了. #include <bits/stdc++.h> #define ll long long #define setIO(s) freo ...

  6. 数论ex

    数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p, ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. 【BZOJ3328】PYXFIB(单位根反演,矩阵快速幂)

    [BZOJ3328]PYXFIB(单位根反演,矩阵快速幂) 题面 BZOJ 题解 首先要求的式子是:\(\displaystyle \sum_{i=0}^n [k|i]{n\choose i}f_i\ ...

  9. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

随机推荐

  1. python-数据类型总结 (面试常问)

    目录 数字类型总结 拷贝 浅拷贝 深拷贝 数字类型总结 一个值 多个值 整型/浮点型/字符串 列表/字典/元祖/集合 有序 无序 字符串/列表/元祖 字典/集合 可变 不可变 列表/字典/集合 整型/ ...

  2. Linux之crond 服务介绍

    在介绍crond之前,先科普一下什么是进程?什么是线程?什么是程序? 程序:程序是一组指令及参数的集合,指令按照既定的逻辑控制计算机运行.进程则是运行着的程序,是操作系统执行的基本单位.线程则是为了节 ...

  3. MySQL-状态Waiting on empty queue引申

    MySQL 事件调度器示例演示 我们大家都知道MySQL 事件调度器是在 MySQL 5.1 中新生的一个较为特殊的功能,其可以作为定时任务调度器,来取代部分原先只能用操作系统任务调度器才能完成的定时 ...

  4. Angularjs中的事件广播 —全面解析$broadcast,$emit,$on

    Angularjs中不同作用域之间可以通过组合使用$broadcast,$emit,$on的事件广播机制来进行通信 介绍: $broadcast的作用是将事件从父级作用域传播至子级作用域,包括自己.格 ...

  5. python + selenium - 自动化环境搭建

    1. 安装python (1)下载地址:https://www.python.org/downloads/windows/ (2)安装方式:默认安装即可 (3)环境变量配置:打开[系统属性]-[环境变 ...

  6. [git 学习篇] 关联github和本地创库

    所以,github和本地创库是通过ssh传送,所以要将公钥拷贝到远程创库上(比如我ssh 远程服务器时,先将本地的公钥,拷贝到远程服务器的某个文件上(http://www.cnblogs.com/li ...

  7. PHP 格式化显示时间 date()函数

    Y 4位数字年,y为2位数字,如99即1999年 m 数字月份,前面有前导0,如01.n 为无前导0数字月份 F 月份,完整的文本格式,例如 January 或者 March M 三个字母缩写表示的月 ...

  8. javascript学习笔记 - 引用类型 Date

    三 Date new Date() 在不传递参数的情况下,新创建的对象自动获得当前日期和时间.参数接收毫秒的timestamp Date.parse() 接收表示日期的字符串,返回相应的日期毫秒数ti ...

  9. Oracle实例和数据库区别

          什么是数据库,其实很简单,数据库就是存储数据的一种媒介.比如常用的文件就是一种,在Oracle10G中,数据的存储有好几种.第一种是文件形式,也就是在你的磁盘中创建一批文件,然后在这些文件 ...

  10. 算法golang篇

    1.slice反转,偏移 func reverse(s []int) { , len(s) - ; i < j; i, j = i+, j- { s[i], s[j] = s[j], s[i] ...